
Grndlegende QM. Dinge
Notation und Normaalbasis
xm|ny “ δmn Dabei sind m,n Zus-
taende im Hilberrtraum.
|ψy “

ř

n cn|nymit cn “ xn|ψy
Phsyikalische Zustaende sind
Normiert:
xψ|ψy “ 1 oder

ř

n |cn|
2

“ 1
Poisson Dinge

∆N “
a

V arpnq “
?
N̄

Je kleiner die Intes, umso groesser rel-
atives Rauschen:
∆N
N “ 1?

N
Braket-Zusammenhaenge:

xψ| “ |ψy
:

xϕ|ψy P C
xϕ|ψy “ xψ|ϕy

˚

xψ|ψy “
ş

ψ˚
pxqψpxqdx Voll-

staendigkeit:
ř

n Pn “
ř

n |nyxn| “ 1
|ψy “

ř

n |nyxn|ψy

1 “
ş

R dx|xyxx|

xx|x1
y “ δpx ´ x1

q
Wellenfunktion:
ψpxq “ xx|ψy
ş

|ψpxq|
2dx “ 1

Ortsdarsellung

|xy, xx|x1
y “ δpx ´ x1

q

ψpxq “ xx|ψy
Impulsdarstellung

|py, xp|p1
y “ δpp ´ p1

q

ψppq “ xp|ψy
Hermitische Operatoren

Â “ Â:

xψ|Aψy “ xAψ|ψy
Messung:
Messugn der Observable A mit Eigen-

wert a: Â|ay “ a|ay
Wahrscheinlichkeit a zu Messen
ppaq “ |xa|ψy|

2

Zustand nach Messung:

|ψnachy “
Pa|ψvory

?
ppaq

mit Pa “

|ayxa|
Erwartunswert:
xAy “ xψ|Â|ψy
Varianz(unschaerfe):

σ2A “ xA2
y ´ xAy

2

Kommutator:
rÂ, B̂s “ ÂB̂ ´ B̂Â
Ñ rA,Bs “ 0 Gemiensame Eigenba-
sis (scharf messbar)
Ñ rx, ps “ iℏ nicht gemeinsam scharf
messbar
Ñ ∆x∆p ě ℏ

2
Ñ rH,As “ 0 ñ BtxAy “ 0
Falls BtA “ 0
Unschaerferelation:
∆A∆B ě 1

2 |xrÂ, B̂sy|
Globale Phase nicht messbar:
|ψy „ eiα|ψy
Zeitentwicklung QM Zustand:
iℏBt|ψptqy “ H|ψptqy

Ñ |ψptqy “ e´ i
ℏHt|ψp0qy

Golden Rule:
Zeitentwicklung trivial in En-
ergieeigenbasis!
|ψp0qy “

ř

n cn|Eny mit cn “

xEn|ψp0qy

|ψptqy “
ř

n cne
´ i

ℏEnt|Eny
Zurueck in andere Basis:
|ψptqy “

ř

axa|ψptq|ay
Erwartungswert in der Zeit

xAyptq “ xψptq|Â|ψptqy

Zeitabhaengigkeit durch Interferrenz
der Phasen:

e´ipEn´Emqt{ℏ
Entartung:
En “ Em,m ‰ n
jede lin.komni, ist stationaer, gleiche
Phasenentwicklung.
2Zustandssysteme
H “ spanp|1y, |2yq

|ψy “ c1|1y ` c2|2y

mit |c1|
2

` |c2|
2

“ 1
Operator in 2S System

Â “

ˆ

A11 A12
A21 A22

˙

, |ψy “

ˆ

c1
c2

˙

Spin Operatoren

Ŝi “ ℏ
2σi(Paulimatrizen)

σx “

ˆ

0 1
1 0

˙

, σy “

ˆ

0 ´i
i 0

˙

σz “

ˆ

1 0
0 ´1

˙

Drehimpulsoperatoren

L̂x “ ŷp̂z ´ ẑp̂y

L̂y “ ẑp̂x ´ x̂p̂z

L̂z “ x̂p̂y ´ ŷp̂x
rLi, Lj s “ iℏϵijkLk
L2

“ L2
x ` L2

y ` L2
z

L̂z “ ´iℏ B
Bφ (Kugelkoords)

rL2, Lzs “ 0
Spin Dinge
rSx, Sys “ iℏSz
rS2, Szs “ 0
Gemeinsame Eigenzustaende:

L2
|l,my “ ℏ2lpl ` 1q|l,my

Lz |l,my “ ℏm|l,my
Ladder-Operator (Drehimpuls)
L˘ “ Lx ˘ iLy
L˘|l,my “

ℏ
a

lpl ` 1q ´ mpm ˘ 1q|l,m ˘ 1y
Wasserstoff Hamitlonian:

Ĥ “ ´ ℏ2
2µ∆ ´ e2

4πrϵ0

mit µ “
meM
me`M

Ansatz Trennugn der Variablen:
ψnlmpr, θ, ϕq “ RnlprqYml pθ, ϕq
Quantenzahlenranges:
n P N; l “ 0, 1, .., n ´ 1;
m “ ´l, ..., l
Hydrogen Energies:

En “ ´ 13.6eV
n2

Uncertainty
Q sei Obeservable und R sei Obersv-
able:
σ2Qσ

2
R ě p 1

2i xrQ̂, R̂syq
2
, sobald

Kommutator = 0, beide koennen
scharf gemessen werden, sobald kom-
mutator ‰ 0 ñ, uncertainty.
Energie-Time-uncertainty
∆E ¨ τ ě ℏ{2
Mit τ Evolutionszeit
Zeit ist an sich keine Observable
Materiewelle

ψpx, tq “ eipkx´ωtq

ω “ ℏk2
2m

pℏk “ mvq
Nur naeherungsweise
Richtig ist:
p “ ℏk
Beschreibt ein massives Teilchen mit
m mit schafter v ăă c (Impulseigen-
zustand).
Elmagwellen: ω “ ck

Materiewellen: ω “ ℏ
2mk

2

p “ ℏk “ 2πℏ
λdB

De Broglie Beziehung: λdB “ h
mv

Fourie-Shit

fpxq “ 1?
2π

ş8
´8 gpkqeikxdk

gpkq “ 1?
2π

ş8
´8 fpxqe´ikxdx

Impuls im Ortsdarstellung

p̂ “ ´iℏ B
Bx

in Impulsraum einfach ¨p

H.O.
Ĥψ “ Eψ, mit V̂ pxq “ 1

2mω
2x̂2

SE:

´ ℏ2
2m B

2
xψ ` m

2 ω
2x2ψ “ Eψ

Umparametrisieren: ξ “

b

ℏ
mω x,

Oder: (chat meint):

ξ “

b

mω
ℏ x dann mit Kettenregel

partiell inten.

Ñ B
2
ξψ “ pξ2 ´ Kqψ, K “ 2E

ℏω
Suche zunaechst asymptotische Loe-
sung:

ξ ąą 1 ñ B
2
ξψ “ ξ2ψ

ñ ψaalg. “ Ae´ξ2{2
` Beξ

2{2

da ψ normalisierbar sein soll.
ñ B “ 0
Suche nun Non-asymtotix solution:

ψpξq “ hpξqe´ξ2{2

Einsetzen und kurezen:
ñ B

2
ξh ´ 2ξBξh ` pK ´ 1qh “ 0

Nun Potenzreihenansatz, also guess:

hpξq “
ř

j ajξ
j

Bξh “
ř

j j ajξ
j´1

B
2
ξh “

ř

jpj ` 2qpj ` 1qaj`2ξ
j

Erhalte rekursionsformel:

aj`2 “
2j´K`1

pj`2qpj`1q
aj

Reihe muss iwann abbrechen, da die
Reihe sonst explodiert ñ keine nor-
malisierung moeglich. Dhight Power
n.
Wir setzen, damit die Rekursions-
formel “ 0 und erhalten: K “ 2n`1
mit der Definition von K
E “ ℏωpn ` 1

2 q

Free Particel

V pxq “ 0,ñ
ˆ

H “
ˆ2

2mp
Seperatiosnansat:
ψpx, tq “ ϕpxqT ptq
Energieeigenfunktionen:

ϕkpxq “ Aeikx ` Be´ikx
mit:

k “

b

2mE
ℏ2

und Ebene wellen:

ψkpx, tq “ eipkx´ωtq
mit

ω “ E
ℏ “ ℏk2

2m
Impulseigenzustaende:
p̂ “ ´iℏBx ñ p “ ℏk
Energieimpulsrela:

E “
p2

2m “ ℏ2k2
2m

Wellenpackete

ψpx, tq “
ş

cpkqeipkx´ωtqdk
ş

|cpkq|
2dk “ 1

Zeitentwicklung:

H|py “
p2

2m |py

|ψptqy “
ş

dpxp|ψp0qye´i p2t
2mℏ |py

|py Zustand scharfer Impuls
ş

dp|pyxp| “ 1

Infinite square Well
SG:

´ ℏ2
2m B

2
xψ “ Eψ

Randbedingungen ergeben B=0 in
aalg. loesung.
Es folgt: kn “ nπ

L

En “ n2π2ℏ2
2mL2

Eigenfunktionen:

ψnpxq “

b

2
L sin

`

nπx
L

˘

Finite Square well
SG Innen:

ψ2
` k2ψ “ 0, k “

b

2mE
ℏ2

ψ “ A sinpkxq ` B cospkxq
SG Aussen:

ψ2
´ k2ψ “ 0, k “

c

2mpV0´Eq

ℏ2

ψ “ Ce´kx
` Dekx

Anzahl begundener Zustaende:

N « 2a
π

b

2mV0
ℏ2

Dispersion wellenpacket
Wellenpacket aalgemein:

ψpx, tq “
ş

dkApkqeipkx´ωpkqtq

Phase:
Φpkq “ kx ´ ωpkqt
Regel:

B
2
kω ‰ 0 ñ zerfliest

B
2
kω “ 0 ñ zerfliest nicht

ωpkq zerlfiesen?
ω “ ck nein

ω “ αk2 ja

ωn9n2 revivals

ω “ αk ` βk2 jop

Φ Ort
linear moves

quadratisch stays
diskret ?

? moves

Altklausuraufgaben
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Aufg1. Positronium
a) Reduktion auf einteilchensystem:

µ “
m1m2
m1`m2

hier
“

me
2

Energyeingenwerte Coumlobgebun-
denes System:

En “ ´
µe4

2p4πϵ0q2ℏ2
1
n2

Wasserstoff: EH1 “ ´13, 6eV
b) Gleiche Energienivceaus wie bei

H2, also En “ ´
E1
n2 , erster an-

gereger Zustand n=2.
c) Wasserstoffaehnliche Energien-

iveaus: En “ ´Z2 Eryd

n2

Ubergangsniveuas:

∆E “ Z2ERydp 1
n2
1

´ 1
n2
2

q

mit Lyman-Serie: Ubergaenge NACH
n=1.
Aufgabe2:

Dipolmomente: d⃗ “ ´exψ|r⃗|ψy
verschwinden wenn Rauemlich spiegel-
symmetrisch.
Integrand ungeradeÑIntegral=0
c) Zeitentwicklung Zustand:

|n, l,m; ty “ e´iEnlmt{ℏ|n, l,my
Zeitentwicklung Dipolmoment, einset-
zen und Integral loesen.

Frequenz des Dipols: ω “
E2p´E1s

ℏ
Aallg. Zeitentwicklung:

|Ey Ñ e´iEt{ℏ
|Ey

Allg. Bohrfrequenz: ωij “
Ei´Ej

ℏ
Aufgabe3:
b) Zeitentwicklung am einfachsten in
der Eigenbasis des Hamiltonoperators

Ĥ “ ωσx, dann also den Anfangszu-
stand in Eigenbasis angeben, Zeiten-
twicklugn der Eigenzustaenden, mit

|`y Ñ e´iωt{ℏ
|`y, dann zusam-

mensetzen.
c) Phasenvergleich
c´
c`

“ eipE`´E´qt{ℏ
,

gesucht, war t1, sodass

e2iωt{ℏ “ i “ eiπ{2

Aufgb.4:
a) massives Teilchen im Potential-
freienraum:

E “
p2

2m , p “ ℏk, ωpkq “
Epkq
ℏ

c)vergleich der exponenten

sxptq “ sxp0q ` i ℏ
2m t

Varianz:∆x2ptq “ 1
2

1
ℜp1{sxptqq

Breite der Ortsverteilung:

∆xptq “ ∆xp0q
b

1 ` p ℏt
2msxp0q

q2

d) periodisches potential: die phasen
laufen schneller auseinader, das
wellenpacket dispersiert staekre.
Aufgabe 5:
Ist das Potential Spereriebar, so ist es
auch die Schoredingergleichung:
Damit: ϕpx, yq “ ϕxpxqϕypyq
Ausserdem gilt Energieaddition:
Enx,ny “ Enx ` Eny

b) 1D-Kasten En “ ℏ2π2

2md2
n2

Aufgabe 7:
Potentialstufe. wenn V “ 8, ist
Aufenthaltwahrscheinlichkeit =0 und
ansonsten Wellenzahl der Welle des
Teilchens:

k “

?
2mpE´V q

ℏ
c) Grenzverhalten der Wellenfunktio-
nen:
Ñ Stetigkeit der Wellenfunktion:
Ψ2px0q “ Ψ3px0q
Ñ Stetigkeit der ersten Ableitung:
BxΨ2px0q “ BxΨ3px0q
Ableitung nur unstetig, wenn V “ 8
also harte Wand
Aufgabe 8:
xH|Hy “ xV |V y “ 1, xH|V y “ 0

Bedingung: xL|Ly “ 1 ñ N “ 1{
?
2

b) Gedrehte zustaende:

|`y “ 1?
2

p|Hy ` |V yq

|´y “ 1?
2

p|Hy ´ |V yq

Invertieren:
|Hy “ 1?

2
p|`y ` |´yq

|V y “ 1?
2

p|`y ´ |´yq

Einsetzen

c) |`y Ñ eikn`d|`y

|´y Ñ eikn´d|´y
Grundsaetlich:

Phase “ eiknd, k “ 2π
λ

Doppelbrechung:
∆ϕ “ kpn` ´ n´qd
d) Nur relative Phasen sind entschei-
dend
Aufgaben 9:
In Luft ist optische Wellenlaenge =d,
im Glas = nGd
zusaetzliche laenge: ∆L “ pnG´1qd
Phasenverschiebung:

∆ϕpdq “ 2π
λ pnG ´ 1qd

Fuer ideales Mach-Zehnder gilt:

PD1pdq “ cos2p
∆ϕpdq

2 q

PD2 “ sin2p
∆ϕpdq

2 q

Bedingung fuer Maximum/Minimum:
Max von PD1: ∆ϕ “ 2πm
Min von PD2:∆ϕ “ p2m ` 1qπ

Es folgt: dmin “ λ
2pnG´1q

Aucfgabe 10. Stern Gerlach.
a ) Hier S “ 3{2
gemessen wird Sy

Also my “ ´ 3
2 ,´ 1

2 ,
1
2 ,

3
2

Also # “ 2S ` 1 “ 4 Moegliche
Stahlen.
b) Wenn man nun nur 3{2 durch
blende durchlaesst, wird man danach
nur noch 1 SPot sehen
c) Wenn urspruenglich 4 Strahlen, von
den Sy SG, werden im neuen der Sx
misst, dann eine Matrix mit 16 Fel-
cken sein.
Klausur 2020
Aufgabe 1) Exotisches Atom
Wasserstoffaehnliche Energien:

En “ ´
µ
me

Z2

n2 ¨ 13.6eV

µ “
mkernm

mkern ` m
b) Wasserstoggaehnliche Ionen

En “ ´
µ
me

Z2

n2 ¨ 13.6eV

c) Definition Lymann:
∆E “ E2 ´ E1
Aufgabe 2 Dipol,Radial,Kugel
a) l = m+bauch-1 (= Nullstellen)
m = wie oft phasencolor
(rotsym: m=0),
b) Radialfunktion zeichnen:
fuer l=0, radialteil hat endlichen wert,
startet nicht bei null
Radialknoten= n-l-1
Aufgabe 3: Zeeman effekt,
Termschema
Normaler Zeemanefekkt:
∆E “ µBBml
µB “Borhsches magneton, ml “
´l, .., l
a) Energien:

E3D,ml
“ E0

3D ` µBBml,
also 5 zeeman Unterniveaus.
c) Übergangsenergie:
∆E “ mµB ¨ B
für Photonen:
Eγ “ pE3D ´ E2P q ` pmi ´

mf qµBB
ñ 3 Energien ñ 3 Wellenlängen
d) π-Strahlung nur entlag einer Achse
(nur 2 Energien)
nur zirkulare Polarisation
Aufgabe 4: Qm im Kastenpoten-
zaal
a) Normierungsfaktorbestimmen, im-

mer xψ|ψy “ 1 “
ş

|ψ|
2dx nutzen

und dann xψm|ψny “ δmn
b) zeichnen, Wahrschein-
lichkeitsverteilung:

|ψ|
2

ñ nix negativ.
c) Zeitentwicklung in Eigenzustand ez,
nur pahsenfaktor.

ψpx, tq “
1

?
2

ř

jpψjpxqe

´iEkt

ℏ

d) |ψpx, tq|
2

“
1
2

´

|ψ0|
2

` |ψ1|
2

` 2ψ0ψ1c cosp
E1´E0

ℏ ¨ tq
¯

Teilchen im doppeltopfpot

a) Eigenzustand: Ĥ|Ry , Ĥ|Ly

Eigenwerte. Ĥ| ` bzw.´y



b) PR “ |xR|ψy|
2, |a|

2
` |b|

2
“ 1

|ψy “ a|Ly ` eiφb|Ry
c)Man erwartet oszilation, weil L und
R keine eigenzustaende, nur ueber-
lagerunge, und inder zeit phaseninter-
ferrenz auftritt
Energieeigenzustaende in 2D
Energieeingwerte des harm oszi mit

potenzaal W pxq “ 0.5mωx2

En “ ℏωpn ` 1
2 q, n “ 0, 1, 2...

b) 1 D Kastenpotenzaal:

En “ n2π2ℏ2
2md2

, n “ 1, 2, 3

Qunatisierung uber sin, im potenzaal

und E “ ℏ2k2
2m

c/d/e) Wenn Potential: V px, yq “

W pxq ` Upyq, dann ist ψpx, yq “

ϕpxq ¨ χpyqund E “ Ex ` Ey
Potenzaalstufe
Ansaetze:

ψ1pxq “ Aeik1x ` Be´ik1x

ψ2pxq “ Ceik2x

Aalgmein:

ℏ2k2
2m ` V “ E ñ k “

?
2mpE´V q

ℏ
b) Randbedingungen wie immer:

ψ1px0q “ ψ2p0q, ψ1
1p0q “ ψ1

2p0q
c) Reflexionskoeefizient absteigende
Stufe:
0 ď R ď 1
Bei steigender Stufe: kann wenn E ă
V0, R=1 sein, anosnten auch 0 ď R ď
1
d) Wellenfunkt., Zeichnen nach Poten-
zaalstufe:
Ñ V “ 0 freies teilchen mit Wellen-
zahl k1
Ñ V ‰ 0, E ą V Wellenfunk.
bleibt oszilierend aber mit laengere,
oder kuerzeren wellenlaenge, und re-
flektion moeglich.
Ñ V ąą E Wellenzahl wird imag-
inaer, funktion expotnetiell abfallen,
nur tunnelerffekt
λ “ 2π

k , wenn pot faellt, wird wellen-

laenge kuerzer
Aufg. 8 Polarisationszustaende
Jede Komponente bekommt Phase:
H-Komponente ϕH “ knxd
V: ϕV “ knyd

ñ |fy “ 1?
2

peiϕH |Hy ` eiΦV |V yq

Relevanz nur relative Phase:
∆ϕ “ kdpny ´ nxq und ϕH
als globalens irrelevsanten (referen-
zphase) nutzen:

|fy “ 1?
2

p|Hy ` ei∆ϕ|V yq

ñ zirkularpolarisiert
Aufg 10 Stern gerlach
S Ñ 2S ` 1moegliche Zeemanzus-
taende
Grundsaetlcih:

Spin MS-Werte # Strahl
1
2 ´ 1

2 ,` 1
2 2

1 -1,0,+1 3
3
2 ´ 3

2 ,´ 1
2 ,` 1

2 ,` 3
2 4

Mach zehnder Dinge

Zustaende Ò und Ó, nach dem ersten
ST1:
|ψy “ 1?

2
p| Òy ` i| Óyq, i wegen re-

flexions phasenverschiebung

jeder arm, sammlt phase, ϕ “ 2π
λ nL

Vor dem zweiten ST2:

|ψy “ 1?
2

p| Òy ` iei∆ϕ| Óyq

Dann ST2 und konstruktive oder de-
strukitve Interferenz:

Ñ PD1 “ cos2p
∆ϕ
2 q

Ñ PD2 “ sin2p
∆ϕ
2 q

Transfermatrix fuer nach ST1,vor ST2
ˆ

ei∆ϕ 0
0 1

˙

k “

?
2mpE´V0q

ℏ
∆ϕ “ pkv0 ´ k0qL
Gestoertes Kastenpotentzaals
a) Ansatz ungestoertes Kastenpot:

ψnpxq “

b

2
d sinpnπxd q, n “

1, 2, 3, ...
b) Nur ungerade Eigenfunktionen
spueren die Steorung, weil die geraden
haben knoten inner Mitte

c) En “ E
p0q
n ` 2A

d
Aug.5 SchroedingerGl.
Herleitung Orsoperator im Impul-
sraum
Gesucht xp|x̂|ψy,

dann 1 “
ş

dx|xyxx|

xp|x̂|ψy “
ş

dxxp|xyxxx|ψy

xx|py “ 1?
2πℏ

eipx{ℏ

ñ xp|xy “ 1?
2πℏ

e´ipx{ℏ

Einsetzen und Ableitung nach p
erkennen.
x̂p´raum “ iℏ B

Bp
b) SchroerdingerGl im Impulsdarstel-

lung fuer V px̂q “ x̂2

Ĥ “
p̂2

2m ` V px̂q

p̂ Ñ p

x̂ Ñ iℏ B
Bp

WS17/18
Aufg.1 Potenzaal
Erwartungswert Energie:

xEy “
ř

n |cn|
2En und

E0 “ 1
2ℏω,E1

3
2ℏω

xE2
y “

ř

n |cn|
2E2

n

Zeddluffgaben
Phoddoeffekt
eUa “ Wa ´ hν
AnzahlPhotonen in t=1s mit P
N “ Pt

hν “ Ptλ
hc

Maximaler Photostrom:
Imax “ Ne

t
Zerlegung Basisi
xam|bjy “ xam|

ř

k cjk|aky “

cjkδmk “ cjm
Verzoegerungsplatte

∆ϕ “ ∆ ¨ c “ 2π
λ pnl ´ nsqd

Transfermatritzen von λ{2p4q-Platte:

Mλ{2 “

ˆ

1 0
0 ´1

˙

Mλ{4 “

ˆ

1 0
0 i

˙

De-Broglie
Teilchen mit Impuls: p “ mv
ñ λdB “ h{p

λdB “ 2πℏ?
2mE

Orte Konstanter Phase:

k⃗r⃗ ´ ωt “ C
Phasen und GruppenV

vg “ Bω
Bk , vp “ ω

k “ λν

Kastenpotential:

Enx “ ℏ2
2m

´

nx
π
d

¯2

Normierungskonstate: A “

b

2
d e
iφ

xx|nxy “ A sinpnx
π
d xq

Potenzaalstufe

Wellenfunktion:

Ψpx, tq “ e´iE
h
tψpxq

mit ψpxq “ Aeikx

Wahrscheinlichkeitsstrom:

j “ ℏk
m |A|

2

Transmission/Refrexionskoeefizienten:

R “
|B|2

|A|2

T “
k2|C|2

k1|A|2

R ` T “ 1
Wasserstofaehnliches

λH “ 2πℏc
´RH p1{4´1q

RM “ RH
µM
µH

“ 2πℏc
3λM {4

mM “
µmmp
mp´µM

Borhsches

Borhradius:

rn “ 4πϵ0
ℏ2
µZe2

n2

Borh-V

vn “ Ze2

4πϵ0ℏn
Bohr-E:

En “ ´
µe4Z2

8ϵ20h
2n2

Umlaufdauer: tn “
2πrn
vn

Gemittelte Geschwindikeit

vrms “
?

ă v2 ą “

b

3kBT
m

Interferometer

T ` R “ 1

Tst “

ˆ ?
T i

?
R

i
?
R

?
T

˙

Spigel hat R=1 und: TS “

ˆ

0 1
1 0

˙

Phasenshift:

Tph “

ˆ

eiϕ 0
0 1

˙

Polarisation:

Linkszirkular:

|Ly “ 1?
2

t|Hy ` i|V yu

Rechtszirkular:

|Ly “ 1?
2

t|Hy ´ i|V yu

Spherical Harmonics

Ñ Parity: Yml p´rq “ p´1q
lYml prq

Regel fuer l,m:

—m— aus Phase erkennen, dann

l “ m ` #Bauch ´ 1

Radialfunktion:

linksnach rechts n=1 aufsteigend,
oben unten aufsteigend von l=0

Quantenzahlen bstimmen

n “ pRadiale Knotenq ` l ` 1

Winklige Knoten = l

azitumale Knoten “ |m| (Rotation-
ssymmetrsicum z-achse ñ m=0)

Regeln

Uebergangsregeln:

∆m “ 0,˘1 ∆l “ ˘1

Polatisation:

∆m “ 0 Ñ linear

∆m “ ˘1 Ñzirkulaer

Blochkugelchen

|ψy “ cos θ2 | Òy ` sin θ2 e
iϕ

| Óy

Beugung

Beugungswinkel fuer k-te max:

g sinαk “ kλ

Minima

g sin βk “

´

k ` 1
N

¯

λ

Wellenfunktion Zeichnen

E ą V : Curvature zur Nullinie

E ă V : Curvature weg von Nullinie

Mathe-Dinge
Power Reduction Formular

cos2 θ “
1`cosp2θq

2 , sin2 θ “

1´cosp2θq
2

Trig eix ˘ e´ix
“ 2pcos x, i sin xq

Beitrag von Phase:

|eiα| “ 1 |z|
2

“ z˚z Andere
Bilderchen

Things To Add
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