Grndlegende QM. Dinge

Notation und Normaalbasis

<m|n> = dmn Dabei sind m,n Zus-

taende im Hilberrtraum.

[0 = S enlmdmit cn = (nlt)

Phsyikalische Zustaende

Normiert:

{plpy = 1 oder Zn

Poisson Dinge
=+/Var(n) =

Je kleiner die Intes, umso groesser rel-

atives Rauschen:

AN _ 1

sind

len)? =1

N VN
Braket-Zusammenhaenge:

@l =yt

(BlypyeC

(@lw) = (pley*

&lyy = [P¥(@)y(z)dr Voll-
staendigkeit:

[¥) = X, In)Xnly)

1 = [ dz|z)(z]

(z|a"y = 6(x — a’)
Wellenfunktion:

Y(z) = (xl)
{[(@)?dz = 1
Ortsdarsellung

|2, (z|a") = 6(z — ")
Y(w) = {zly)
Impulsdarstellung
), <plp’> = 8(p —p')
¥ (p) = {pl)

Hermitische Operatoren

A=At

PlAY) = (AY|Y)

Messung:

Messugn der Observable A mit Eigen-
wert a: A|a> = a|a>
‘Wahrscheinlichkeit a zu Messen

p(a) = [{aly)]
Zustand nach Messung:
— Pal¢"uo7'>mi P, =
W}nach> \/M t
laXal
Erwartunswert:
(A = Y| Aly)

Varianz(unschaerfe):

o2 = (A% —(a)?

Kommutator:
[A B] AB - BA
— [A, B] = 0 Gemiensame Eigenba-

sis (scharf messbar)
— [x, p] = 4h nicht gemeinsam scharf
messbar

— AxzAp > %
— [H,A] = 0= 01{(A) =
Falls 0tA =0

Unschaerferelation:
AAAB > 5 [[A, B])|
Globale Phase nicht messbar:

i) ~ ey

Zeitentwicklung QM  Zustand:

RO (8)) = H|p(t))
S (1) = e~ B y(0))

Golden Rule:

Zeitentwicklung trivial in En-
ergieeigenbasis!

[(0)) = X, cnlEn) mit cn =

(En|(0)) i
[9(8)) = Sy cne” IR ER)

Zurueck in andere Basis:

[P (8)) = Xalald(t)]ay

Erwartungswert in der Zeit

(A1) = (&) Alp(8))

Zeitabhaengigkeit durch Interferrenz
der Phasen:

o~ (En—Em)t/h

Entartung:

En =FEm,m+#n

jede lin.komni, ist stationaer, gleiche
Phasenentwicklung.
2Zustandssysteme

H = span(|1),]2))

[¥) = c1]1) + c2]2)

mit ‘C1|2 + ‘Cng =1

Operator in 2S System

i_ (Ann Az _(a
A7<A21 Agz )1V = e

Spin Operatoren

gi = %Ui(Paulimatrizen)

_ (0o 1 _ (0 —i

e =11 0)°% =i 0
1 0
7z =0 -1

Drehimpulsoperatoren
Ly = 9p2 — by

ffy = 2Pz — TPz

L. = &py — 9z

[Li; Lj] = ihegpLy
2=12 + L2 +12

ﬁz = —zh (Kugelkoords)

(L2, L.] = 0
Spin Dinge
[Sz, Sy] = 1hS,

[$2,5.]1=0

Gemeinsame Eigenzustaende:
L2, m) = R21(l + 1)|I, m)
L:|l,m) = hm|l, m)
Ladder-Operator (Drehimpuls)
Ly =Ly +ily

Ly|l,m) =

AT+ 1) — m(m £ D), m + 1)

‘Wasserstoff Hamitlonian:

B BA- gt

me M
mit p = me+M
Ansatz Trennugn der Variablen:
Ui (1.0, 6) = Ry ()Y, (6, 6)
Quantenzahlenranges:
neN; 1=0,1,..,n—1;
m=—1l,...,1
Hydrogen Energies:
Ep = — 13.62&V

n
Uncertainty
Q sei Obeservable und R sei Obersv-
ahle:
U%Qo% > (£UQ, R])?, sobald
Kommutator = 0, beide koennen
scharf gemessen werden, sobald kom-
mutator # 0 =>, uncertainty.
Energie-Time-uncertainty
AE -1 >=h/2
Mit 7 Evolutionszeit
Zeit ist an sich keine Observable
Materiewelle
P(a,t) = ei(szwt)
k2
2m
(hk = mv)
Nur naeherungsweise
Richtig ist:
p = hk
Beschreibt ein massives Teilchen mit
m mit schafter v << ¢ (Impulseigen-
zustand).
Elmagwellen: w = ck

_ 2
Materiewellen: w = ka

— hk = 27h
P AdB
De Broglie Beziehung: )‘dB = mv
Fourie-Shit .
z) = —1L 30 elkxdk
W
g(k) oc ) e_ikxdx
W

Impuls im Ortsdarstellung
p=—ihZ

in Impulsraum einfach -p

H.O.

Hy = By, mit V(z) = mw?a?
SE:

12
— 02y + we?y = By

2
Umparametrisieren: f = \/Ix
: mw 7’

Oder: (chat meint):
£ = "}‘{“)I dann mit Kettenregel

partiell inten.

2 2 2F
ﬁagd’:(f *K)w, K=m
Suche zunaechst asymptotische Loe-
sung:

2 _ ¢2
E>>1= 65111 =&Y
.2 2
= Ygalg. = Ae £°/2 4 Bet7/2
da 1 normalisierbar sein soll.
=B =0

Suche nun Non-asymtotix solution:

- —£2/2
(&) = h(&e
Einsgtzen und kurezen:
= 0zh — 260¢h + (K — 1)h = 0
Nun Potenzreih_enansatz, also guess:
h(§) = Zj ajﬁj
agh = ij anJ*l
0Fh =30 +2)( + 1a; 428

Erhalte rekursionsformel:
a 2j—K+1
it2 = GG+ @
Reihe muss iwann abbrechen7 da die
Reihe sonst explodiert = keine nor-
malisierung moeglich. Jhight Power
n.
Wir setzen, damit die Rekursions-
formel = 0 und erhalten: K = 2n+1
mit der Deﬁnitlion von K
E = hw(n+ 3)
Free Particel
T a2
V(z) =0,= H = o
Seperatiosnansat:
Do, t) = $(@)T (1)
Energieeigenfunktionen:
o (z) = AetkT | BeT R s
— 2mE
b=y
und Ebene wellen:
Y (z,t) = ez(km—wt) mit
_ E _ hk?
W=TR T 2m
Impulseigenzustaende:
p = —ihdy = p = hk
Energieimpulsrela:
I p? | p2p2

m m
Wellenpackete
P(a, t) = §c(k)etFr—wt) g
Sle(k)|?dk = 1
Zeitentwicklung:

2
Hlp) = 55 1p)

. p2/
[9(8)) = § dpCplp(0)ye ™ Fmh )

|p) Zustand scharfer Impuls
§dplp)p| =1

Infinite square Well
SG:2
h 2
~2m a¥ = B
Randbedingungen ergeben B=0 in
aalg. loesung.
Es folgt: kp = %
2

_ nm
Ly = 2mL2
Eigenfunktionen:

n(z) = /% sin (252)

Finite Square well

SG Innen:
1/;/’+k21/):0,k: 2;?2E
¢ = Asin(kx) + B cos(kx)
SG Aussen:

wll—k2w:07k:

2m(Vo—FE)
h2

¢ = Ce™k® 4 peke

Anzahl begundener Zustaende:

~ 2a [2mV|
N~ S Tt

Dispersion wellenpacket
Wellenpacket aalgemein:

o(x,t) = SdkA 'L(k:c w(k)t)
Phase:

P (k) = kx — w(k)t

Regel:

('}kw # 0 = zerfliest
aﬁw = 0 = zerfliest nicht

w(k) zerlfiesen?
w = ck nein
w = ak? ja
wn, an revivals
w = ak + k2 jop
o Ort
linear moves
quadratisch stays
diskret ?
? moves
Altklausuraufgaben
19/20

Aufgl. Positronium
a) Reduktion auf einteilchensystem:

mimo hler mMe
H= mitma 2

Energyeingenwerte Coumlobgebun-
denes System:
4
- _ pe L
En = 2(4meg)2h2 n2
Wasserstoff: E{I = —13,6eV

b) Gleiche Energienivceaus wie bei
E

Hs, also E, = _ﬁl’

gereger Zustand n=2.

c)  Wasserstoffaehnliche
2 Eryd
_z?2Zryd
n2

erster an-

Energien-

iveaus: Fp =

Ubergangsniveuas:

AE = Z%E e
Ryd( n% n2 )

mit Lyman-Serie: Ubergaenge NACH

n=1.

Aufgabe2:

Dipolmomente: d = 7e<1,/}|’r_“|1,b>
verschwinden wenn Rauemlich spiegel-
symmetrisch.

Integrand ungerade—Integral=0

c) Zeitentwicklung Zustand:

In,Lm; t) = = EnimMn, 1, m)
Zeitentwicklung Dipolmoment, einset-
zen und Integral loesen.
Fr . o _ Eop—Ens

equenz des Dipols: w = —
Aallg. Zeitentwicklung:

‘E> - efiEt/ﬁ‘E>

Allg. Bohrfrequenz:
Aufgabe3:

b) Zeitentwicklung am einfachsten in
der Eigenbasis des Hamiltonoperators

E,—E,;
Wij = T

H = woyg, dann also den Anfangszu-

stand in Eigenbasis angeben, Zeiten-

twicklugn der Eigenzustaenden, mit

H»> — eith/h|+> dann zusam
, -

mensetzen.

c) Phasenvergleich

- _ ei(E_*_fE_)t/h

cr ’

gesucht, war t1, sodass

eint/h _ eiﬂ'/?

Aufgb.4:

a) massives Teilchen im Potential-

freienraum:
E=2p*m, p=hk, w(k) =
c)vergleich der exponenten
sz (t) = 50(0) +igkt

. 2
Varianz: Az~ (t) = %m

Breite der Ortsverteilung:

E(k)
R

— ht 2
Az(t) = Az(0) + (2msz(0))
d) periodisches potential: die phasen
laufen schneller auseinader, das

wellenpacket dispersiert staekre.
Aufgabe 5:

Ist das Potential Spereriebar, so ist es
auch die Schoredingergleichung:
Damit: ¢(,y) = bz (2) by ()
Ausserdem gilt Energieaddition:

Enz,ny = FEn, + Eny

_ h2 2 2
b) 1D-Kasten Ep = 2m7:12 n
Aufgabe 7:
Potentialstufe. wenn V = 00, ist

Aufenthaltwahrscheinlichkeit =0 und
ansonsten Wellenzahl der Welle des
Teilchens:

= V2m(E=V)
="

c) Grenzverhalten der Wellenfunktio-
nen:
—  Stetigkeit der
U3 (z0) = ¥3(zo)
— Stetigkeit der ersten Ableitung:
02 Wa(zo) = 02 ¥3(z0)
Ableitung nur unstetig, wenn V = o0
also harte Wand
Aufgabe 8:
CHIHY = (VIVYy =1, CHIVY = 0
Bedingung: {(L|L) = 1= N = 1/\/5
b) Gedrehte zustaende:

— 1
I+ = 5 (H +1V))

- = S 1m - V)
Invertleren

) = J5 (4 + 1)
V)= ﬁ(\+> ==
Einsetzen

o) [+ — ethn+d|py
ikn,d|7>

Wellenfunktion:

> —e
Grundsaetlich:

Phase = eand k= T"
Doppelbrechung:

A¢p =k(ng —n_)d

d) Nur relative Phasen sind entschei-
dend

Aufgaben 9:

In Luft ist optische Wellenlaenge =d,
im Glas = ngd
zusaetzliche laenge: (’n,G — 1)d
Phasenverschiebung:

A¢(d) = Z(ng — 1)d

AL =

Fuer ideales Mach-Zehnder gilt:

2, A¢p(d
Pp1(d) = cos? (254

.2, A¢p(d

Ppo = sin (7%( ))
Bedingung fuer Maximum/Minimum:
Max von Ppi: A¢ = 2mm
Min von Ppo:A¢ = (2m + )7
Es folgt: dp,in = m
Aucfgabe 10. Stern Gerlach.
a ) Hier S = 3/2

gemessen wird Sy

oy = 4.1.1.3
Also # = 2S + 1 = 4 Moegliche
Stahlen

b) Wenn man nun nur 3/2 durch
blende durchlaesst, wird man danach
nur noch 1 SPot sehen
c) Wenn urspruenglich 4 Strahlen, von
den Sy SG, werden im neuen der Sy
misst, dann eine Matrix mit 16 Fel-
cken sein.
Klausur 2020
Aufgabe 1) Exotisches Atom
‘Wasserstoffaehnliche Energien:

Z2
En = —756 T 13.6eV

MEgern™

Mgern T M
b) Wasserstoggdehnliche Ionen
Ep = == Z; . 13.6eV
c) Definition Lymann
AFE = Ey — Eq
Aufgabe 2 Dipol,Radial,Kugel
a) 1 = m+bauch-1 (= Nullstellen)
m = wie oft phasencolor
(rotsym: m=0),
b) Radialfunktion zeichnen:
fuer 1=0, radialteil hat endlichen wert,
startet nicht bei null
Radialknoten= n-1-1

Aufgabe 3: Zeeman effekt,
Termschema

Normaler Zeemanefekkt:

AFE = ugBm;

pp =Borhsches magneton, m; =

=1, .1

a) Energien:

Esp,m, = EJp + ugBmy,

also 5 zeeman Unterniveaus.

c) Ubergangsenergie:

AE =mug - B

fiir Photonen:

Ey = (Esp — Eap) + (m; —
my)upB

= 3 Energien = 3 Wellenldangen

d) m-Strahlung nur entlag einer Achse
(nur 2 Energien)

nur zirkulare Polarisation

Aufgabe 4: Qm im Kastenpoten-
zaal

a) Normierungsfaktorbestimmen, im-

mer <’LM1ZJ> = X|w|2dz nutzen
und dann <'¢1m"¢)n> = dmn
b) zeichnen, Wahrschein-

lichkeitsverteilung:

|’l/}‘2 = nix negativ.
c) Zeitentwicklung in Eigenzustand ez,
nur pahsenfaktor.

—ZEkt
Wz, t) = f (i (@)e B
2

) |p(z, )7 =

(|wo\2 sl + 2oy ecos(Zpte 1))
Tellchen im doppeltopfpot
a) Eigenzustand: H|R) , H|L)
Eigenwerte. ﬁl + bzw47>




2 2 2
b) P = [CRIY)I2, [al? + b2 = 1
) = alL) + e"?b|R)
c)Man erwartet oszilation, weil L und
R keine eigenzustaende, nur ueber-
lagerunge, und inder zeit phaseninter-
ferrenz auftritt
Energieeigenzustaende in 2D
Energieeingwerte des harm oszi mit
potenzaal W (z) = 0.5mwz?
Eyp = hw(n + %),n =0,1,2...
b) 1 D Kastenpotenzaal:
2 232
BEp =218 n=1,23
Qunatisierung uber sin, im potenzaal
n2k?2
und E = %52
c/d/e) Wenn Potential: V(z,y) =
W(x) + U(y), dann ist ¢(z,y) =
é(z) - x(y)und E = Bz + Ey
Potenzaalstufe
Ansaetze: X .
l[)l(.L) _ Aezklz + Be*lklz
Yo () = Cetha®

Aalgmein:
722 -~ _ A/2m(E-V)
o~ T V=E=k= —

b) Randbedingungen wie immer:
P1(w0) = $2(0), 9] (0) = 15(0)

c) Reflexionskoeefizient absteigende
Stufe:

O0<KR<1

Bei steigender Stufe: kann wenn F <
Vo, R=1 sein, anosnten auch 0 < R <

d) Wellenfunkt., Zeichnen nach Poten-
zaalstufe:
— V' = 0 freies teilchen mit Wellen-
zahl k1
— V # 0,E > V Wellenfunk.
bleibt oszilierend aber mit laengere,
oder kuerzeren wellenlaenge, und re-
flektion moeglich.
— V >> E Wellenzahl wird imag-
inaer, funktion expotnetiell abfallen,
nur tunnelerffekt

= Tﬂ-‘ wenn pot faellt, wird wellen-
laenge kuerzer
Aufg. 8 Polarisationszustaende
Jede Komponente bekommt Phase:
H-Komponente ¢ = kngd
V: ¢y = knyd
= 1) = J5(PHIH) + V|V

V2

Relevanz nur relative Phase:
A¢ = kd(ny — ng) und ¢g
als globalens irrelevsanten (referen-
zphase) nutzen:

= L AP
1> = 75 (H) + e 27V))
=> zirkularpolarisiert
Aufg 10 Stern gerlach

S — 28 + lmoegliche Zeemanzus-
taende

Grundsaetlcih:
pin S-Werte
1 _1 + 1 2
2 2> T2
1 -1,0,+1 3
§ [ -g.-dvb+3|
Mach zeh

Phase 180"

chamber

Spiiter
1

# Stranam|bj) =

Zustaende 1 und |, nach dem ersten

ST1:
6> = 5 (11> + il 1), i wegen re-
flexions phasenverschiebung
jeder arm, sammlt phase, ¢ = QTWTLL
Vor dem zweiten ST2:A¢
_ 1 i
) = 2( 1 +ie 9] 1))
Dann ST2 und konstruktive oder de-
strukitve Interferenz:
— Ppq = COSQ(T)
— Ppy = sin?(52)
Transfermatrix fuer nach ST1,vor ST2

eiA¢ 0
0 1
vV2m(E—
k= m(h Vo)
A¢ = (kvg — ko)L
Gestoertes Kastenpotentzaals
a) Ansatz ungestoertes Kastenpot:

Yn(z) = 2 sin(RIZ) n
1,2,3,...
b) Nur ungerade Eigenfunktionen

spueren die Steorung, weil die geraden
haben knoten inner Mitte

0
o) Bn = B 4 24
Aug.5 SchroedingerGl.

Herleitung Orsoperator im Impul-
sraum
Gesucht <p|ii|’¢)>,
dann 1 = Sdr\m}(m\
plely) = de@\m;w@lw

— 1 ipx/h
{zlp) = o=

_ 1 —ipx/h

= (play = —A—e
Einsetzen und Ableitung nach p
erkennen.

- i 0
Tp—raum = lh%

b) SchroerdingerGl im Impulsdarstel-

lung fuer V(:f:) = i2

_ P 5,
H= 42+ V(@)
p—=pP
4 ;> [
T — zhﬁ
WS17/18
Aufg.1 Potenzaal
Erwartungswert Energie:
(EY =3, len|?En und
Eg = $hw, By 3 hw

2 2 n2
CET) =2 len|"E5
Zeddluffgaben
Phoddoeffekt
eUg = Wq — hv
AnzahlPhotoneR in t=1s mit P
N = Pt _ bt
hv hc

Maximaler Photostrom:
e

mar =
Zerlegung Basisi

lam| Xy cjklagy =
CikOmk = Cjm
Verzoegerungsplatte
Ap=A-c= 2Tﬂ'(nlfns)d
Transfermatritzen von A/2(4)-Platte:

1 0
MA/2=<0 71>

1 0
ez My g = (0 1)

Interference

De-Broglie
Teilchen mit Impuls: p = mv
= Xip = h/p
A _ _27h
dB 2mE
Orte Konstanter Phase:

kFf—wt=C
Phasen und GruppenV

_ Ow W
vg—a—k,vp—F—AV
Kastenpotential:

P 2
_ n?

En, = 4 (ne7)
Normierungskonstate: A = \/%E“P
(zIng) = Asin(ng 5 )
Potenzaalstufe
Wellenfunktion:

—iEy
W(a,t) = e R ()
mit YP(z) = Atk
Wahrscheinlichkeitsstrom:
i =4l

Transmission/Refrexionskoeefizienten:

_ B2
—lAR
_ kalc|?
= %nap
R+T=1
Wasserstofaehnliches
Ny = —2mhe
H = “Ry(1/4-1)
_ EMo_
Ry = Ry oy

2mhe

3 /4
m

™A = ey
Borhsches
Borhradius: )
rn = 4meg #7;
Borh-V

Ze?
4dmeghn
Bohr-E:

En =

Un =

_ ,ue4 z2
868 h2n?2
27Ty
Un
Gemittelte Geschwindikeit

/ /3kpT
Vrms = V< v2 = %

Interferometer

T+R=1 .

Spigel hat R=1 und: Tg = <(1) (1)>
Phasenshift:

i} 0
= (% 9)

Polarisation:

Umlaufdauer: t, =

Linkszirlltular:
|L) = %{\H> +14V)}
Rechtszirkular:

— 1 i
IL) = 5 {IH) —ilV)}
Spherical Harmonics

— Parity: Y™ (=r) = (=)' (r)

.
- P8@®
“ WESEW

- OHSOTHO

3

Regel fuer 1l,m:
—m— aus Phase erkennen, dann

l =m+ #Bauch — 1

Radialfunktion:

(3.0.0)

riay rlay rlay rlay

rlay rlay rlay

rlay i

« Things To Add

linksnach rechts n=1 aufsteigend,
oben unten aufsteigend von 1=0

Quantenzahlen bstimmen
n = (Radiale Knoten) + [ + 1
Winklige Knoten =1

azitumale Knoten = |m| (Rotation-
ssymmetrsicum z-achse = m=0)

Regeln
Uebergangsregeln:
Am =0,+1 Al = +1
Polatisation:

Am = 0 — linear

Am = +1 —zirkulaer
Blochkugelchen

Bloch-Kugel ‘ZA>

\Y
75 (1) +il 1))

|y = cos §| 1) +sin §e*?| 1)

Beugung

Beugungswinkel fuer k-te max:
gsinag = kA

Minima,

gsin By = (k + %) A
‘Wellenfunktion Zeichnen

E >V : Curvature zur Nullinie

E < V : Curvature weg von Nullinie

Mathe-Dinge
Power Reduction Formular

cos2 6 H%S(QQ), sin29 =

Trig e
Beitrag von Phase:

+ e " = 2(cos z,isinx)

‘eia| =1 |Z|2 = z*z Andere
Bilderchen

Hydrogen Wave Function




	Grndlegende QM. Dinge
	H.O.
	Free Particel
	Infinite square Well
	Finite Square well
	Dispersion wellenpacket
	Altklausuraufgaben
	19/20
	Zeddluffgaben
	Spherical Harmonics
	Radialfunktion:
	Quantenzahlen bstimmen
	Regeln

	Mathe-Dinge
	Things To Add

