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Abstract

The resolution of ground-based optical telescopes is limited by turbulence in the atmosphere,
which causes distortion of incoming wavefronts. This phenomenon is called „seeing”. To conquer
this problem, adaptive optics has been invented, which uses systems that measure and correct
these wavefront distortions in real time by comparing them to each other, thus improving image
resolution.
In this experiment, the system gain of a CMOS camera system was measured, which was done by
plotting the variance against the mean signal, also called the „photon transfer curve”. The slope of
this curve corresponds to the desired system gain in units of electrons per ADU. It was determined
to be g = 0, 94 e−/ADU, which coincided with the provided value of gscript = 0, 944 e−/ADU.
In the second part, a Shack-Hartmann sensor was set up using a microlens array, a collimated
laser source, and the CMOS detector from the first part. The positions of the centroids of the
microlens array for the undistorted wavefront were recorded.
After adding a lens with an astigmatism defect to the system in order to distort the wavefront,
the new centroids were recorded and compared to the previous „flat” ones. This allowed the
Shack-Hartmann gradients to be computed, which, when plotted, appeared to have lost spherical
symmetry, but still showed reflectional symmetry. Considering the nature of the astigmatism
defect, this was to be expected.
The construction of the Shack-Hartmann gradients would be the first step in reconstructing the
original wavefront. However, this lies beyond the scope of this report.
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1. Introduction
1.1 Theoretical Background
When observing astral objects with an optical
instrument, one can be confronted with a phe-
nomenon called „seeing”, which describes the
contribution of fluctuations in the atmosphere
to the distortion of incoming wavefronts. It can
present itself as twinkling of stars or other vari-
able distortions of the objects observed. Large-
scale telescopes struggle with this, as there is
a point at which the limitations set by the
Rayleigh criterion become negligible and see-
ing becomes the main cause of a limited resolu-
tion. To work around this problem and enable
more precise measurements, one can apply adap-
tive optics. Understanding the workings behind
adaptive optics is crucial for today’s astronomi-
cal observations, hence this experiment.

As mentioned, seeing is caused by turbulent
air in the atmosphere. Temperature gradients
create turbulence cells with different refractive
indices, acting like weak, but numerous lenses.
These „lenses” are randomly distributed in the
atmosphere. Due to its constant fluctuations,
the incoming wavefronts are refracted differently
at various positions and times.

To correct this, adaptive optic systems have
emerged. The idea behind them is to measure
a wavefront, determine how distorted it is and
then correcting it in real time. The correction
is computed through comparison with previous
measurements and can then be applied using de-
formable mirrors. This can improve the spatial
resolution drastically, making sharp observa-
tions from earth’s surface possible.

For the correction to be possible, the change
of the wavefront (i. e. its gradients) has to be
known. In this experiment, a Shack-Hartmann
sensor will be used for this task.

The Shack-Hartmann sensor measures the wave-
fronts by dividing the aperture into smaller as-

pects using a microlens array. Each microlens
has a focal point, the non-distorted position
of which is known. The sensor then measures
the displacement of an incoming wavefront from
this reference point. The Shack-Hartmann gra-
dients can then be computed, which together
with Zernike polynomials can be used to recon-
struct the undistorted wavefront.

The Shack-Hartmann Sensor used in this ex-
periment uses a CMOS (Complementary Metal
Oxide Semiconductor) camera to determine the
positions of the focal points. Each pixel in this
camera has its own amplifier, enabling faster
readouts. These can be done individually by
a connected ADC, creating an image (here in
analog-digital-units, also called „ADU”).

The CMOS camera has a photodiode and mul-
tiple transistors to integrate the incoming light.

Figure 1.1: Schematic basic single active
pixel in a CMOS sensor ([1])

Before exposure to light, the diode is charged us-
ing an external power source. Incoming photons
discharge it via the photoelectric effect, making
the voltage drop from the original level. The
total voltage drop correlates with the incoming
light’s intensity. An analog-to-digital converter
processes this analog voltage and returns a dig-
ital „count”. Methods such as „pixel binning”,
where an arbitrary amount of pixels are inter-
preted as one, are used to improve the depth
of the digital image. Since electrons can unin-
tentionally move from the valence band to the
conduction band due to thermal excitation, a
„dark current bias” may have to be considered.
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An important quantity for the final image is
the the „system gain”, which describes the ratio
of the number of photoelectrons to the digital
ADU count. Knowing the system gain allows for
a conversion of ADU to analog photon counts.
Lastly, astigmatism is a common refraction er-
ror caused by spherical asymmetry in a lens. It
is usually corrected by lenses which are more
cylindrical than spherical in nature [3].

1.2 Goals

First, the system gain of a CMOS detector will
be determined, which is also referred to as mea-
suring the photon transfer curve. For this, an
adjustable flat-field lamp will be used.

In the second part, the Shack-Hartmann gradi-
ents of an astigmatism lens will be determined
and interpreted.

2. Means of Measurement
In this part, the system gain of a CMOS cam-
era is determined by plotting the mean signal
SC against the variance N2

C − R2
C , where NC

is the total noise of the image and RC is the
readout noise of the chip, both in ADU. Since
photon noise follows a Poisson distribution, the
variance of the signal should be proportional
to its mean. A line can be fitted through the
corresponding data, allowing the system gain g

to be determined by the slope of the fit.

This can be derived from the formula for the
expected mean signal count:

SC =
−1 +

√
1 + 4g2k2(N2

C − R2
C)

2gk2

⇒ lim
k→0

SC = lim
k→0

−1 +
√

1 + 4g2k2(N2
C − R2

C)
2gk2

Using L’Hôpital’s rule, it follows:

⇒ lim
k→0

4g2k

4gk

(N2
C − R2

C)√
1 + 4g2k2(N2

C − R2
C)

= g(N2
C − R2

C)

Thus, as the flat field variation k approaches 0,
as would be the case in this experiment’s setup,
the plot should result in a straight line.

To remove pixel-dependent variations in sensitiv-
ity, which cause the so-called „flat field effect”,
two images were taken at the same intensity
level and subtracted from one another. This
cancels out the fixed pattern of the flat field
effect, since both images have the same sys-
tematic pixel sensitivity regardless of statistical
variation. To increase accuracy, the two images
were taken in quick succession to ensure stable
illumination between exposures.

Before the individual images can be subtracted
from each other, they have to be normalized to
have the same average intensity. After that, the
dark current bias can also be subtracted from
both images to get even more precise results,
which is necessary if the bias is very large, thus
non-negligible.

After canceling out the flat field effects, the
standard deviation in a selected region can be
computed and squared to get the variance. Since
this is the variance of two subtracted images, it
is also doubled, so the result has to be divided
by 2 to get the correct per-image variance.

This process is repeated for different illumina-
tion levels by reducing the current through the
LED to get multiple data points for the signal-
variance plot. A linear curve can be fitted to
those points, the slope of which equals g, the
system gain in electrons per ADU.
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In the second part, a Shack-Hartmann setup
using a microlens array, a laser source, and a
CMOS detector was assembled. The laser beam
was collimated to produce a plane wavefront
that could be analyzed with the microlens array
and thus set a reference for further measure-
ments.
The microlens array was carefully aligned so
that each sub-aperture had a sharp focal point
- also called centroid - on the CMOS detector,
indicated by a corresponding sharp dot on the
screen. The positions of the undistorted cen-
troids were determined and saved in a CSV file
for later reference.
After saving the reference locations, an astigma-
tism lens was introduced into the optical path

to distort the incoming wavefront (simulating a
possible aspect of seeing). A second image was
taken with the CMOS camera under otherwise
identical initial conditions, and the position of
the new, distorted centroids were extracted.

Comparing the positions of the new centroids
to the reference returns the desired displace-
ments from which the Shack-Hartmann gradi-
ents can be computed, which show the local
wavefront tilt. Using the provided python script
„display_gradients.py”, the gradients were com-
puted and then visualized. This is one of the
first steps towards the reconstruction of the ini-
tial wavefront, which will not be part of this
report.

3. Results
3.1 System Gain
The signal-variance plot was used to determine
the system gain of the CMOS camera. For that,
the variance was calculated by the provided
python script „gainSH_v1.py”, which used the
method elaborated upon in the previous chap-
ter. It then plotted the evaluated data points
as seen in the following figure.
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Figure 3.1: Signal - Variance Plot with
slope g produced by „gainSH_v1.py”

The slope, which equals the system gain, was

determined it to be:

g = 0, 94 e−

ADU .

This matches the example value given in the
script [2]:

gscript = 0, 944 e−

ADU .

Knowing the gain allows for physical interpre-
tation of the detector output.

3.2 Shack-Hartmann Sensor

To determine the gradients of a wave-
front, the centroids of an undistorted
wavefront were first obtained using
„find_centroids_and_save_results.py”. Then,
the setup was altered and an astigmatism lens
was introduced. The centroids changed accord-
ingly, which was also recorded with the same
python script.
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Figure 3.2: Reference Centroids
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Figure 3.3: Astigmatism Centroids

The positions of these centroids were then used
to calculate the wavefront gradients, which were
plotted using display_gradients.py:
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Figure 3.4: Astigmatism Gradients

While this plot has no spherical symmetry, two
axes of mirror symmetry are visible, one verti-
cal axis and another horizontal one. This sug-
gests cylindrical symmetry, with the vertical
axis aligning with the undistorted case and the
horizontal axis appearing „stretched”.

4. Discussion
4.1 System Gain
The system gain computed by the linear fit
of the signal-variance plot returned a result of
g = 0, 94 e−/ADU. This result strongly coin-
cides with the value provided by the script for
this experiment, gscript = 0, 944 e−/ADU. We
thus have no reason to doubt the accuracy of
this measurement.

4.2 Shack-Hartmann Sensor
All 28 centroids were able to be found, both
for the reference as well as the image with the
built-in refractive error.
While rotational symmetry is no longer observ-
able, the gradients still appear to be mirror

symmetric around a vertical and a horizontal
axis. Since astigmatism is a refractive error
caused by rotational asymmetry, the increase of
gradient magnitude further away from the verti-
cal symmetry axis combined with a decrease of
it further away from the horizontal one was to
be expected. Considering the symmetry of the
gradients, it also becomes apparent as to why a
cylindrical lens would be used to correct this.

The light scatter of the direction of the gradi-
ents can be explained by experimental inaccu-
racies such as alignment of optical components
by hand, the lens not being a perfectly crafted
astigmatism lens or simply being a bit dirty.
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