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1 ’Grundlagen’ und nice to know:

Sparky

1 ’Grundlagen’ und nice to know:

1.1 Taylor:

n=0
X
e = x_'
=0 n:
1
sin(x) = 2 (2( +)1), X2
, <
Sth(X) = Z me”H

1
cos(x) = Z ((2 ;'

n
In(1 - x) = —Z X
n

n=1

In(1 4+ x) = — Z(—l)""?"
1

n=0
a < a n
(14 x)" = nz::‘) <n> x
S [k
(a+b)k = Z < ) aPbk=r
p=0 P

1.2 Integrale:

/sin3(x)dx = / sin(x) sinz(x)dx = %cos3(x) — cos(x)

/ sin?(x)dx = %(x — sin(x) cos(x))

/ cosz(x)dx = %(x + sin(x) cos(x))

/ ;dx = arcsin(x)
V1-—x2

/ 1 +1x2 dx = arctan(x)

x2
/ dx = x — arctan(x)
1+ x2

1.2.1 Trick:

co oo ix o .
/ cos(x) dx = / € dx da / i sin(x) dx =0
oo 1+ x2 —eo 1+ x2 o 14 x2

Es bietet sich also an, die Antisymmetrie von Funktionen (f(—x) =

—f(x)) beim Integrieren auszunutzen.
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1.3 Zylinder- und Kugelkoordinaten:

1.3.1 Zylinderkoordinaten:

rcos(¢)
x = | rsin(¢)
z
cos(¢) — sin(¢) 0
e, = | sin(¢p) ey = cos(¢) e, =10
0 0 1
dV =rdrd¢ dz
_ 1_ _
V=eo + ;ed,()q; +e,0,
_ 19, 9f  10*f  0f
A= n o T e T
1.3.2 Kugelkoordinaten:
rsin(0) cos(¢)
X = | rsin(f)sin(¢) | = re,
rcos(9)
sin(@) cos(¢) cos(6) cos(¢) —sin(¢)
e, = | sin() sin(¢) ey = | cos(0) sin(¢h) ey = cos(¢)
cos(6) —sin(0) 0
dV =rsin(0) dr d¢p do
_ 1_ _
V= erar + ;3069 + ”1—11(0)e¢a¢
_Llop0f 1 0 g 0df 1 2f
Al = r2 0r(r or * r2 sin(@) 00 (sin(0) 00 )+ r2 sin®(0) 0¢?

Ansatz fiir Herleitung:

_ sin(@) cos(¢) _ _ _
?:mem@] 1Z=1 s o= Z)

r or or or

cos(0)

_ cos(8) cos(¢) _ _ _
ox . ox _ ox ox
6= r[COS(G? s1n(q§)] | F |=r = ey = (%)/ﬂ 0 D)

—sin(@)

6 V=—1 9
N RIER
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1.4 Sinus-Identititen

sin(x) = l.(e"x —e ™) = lsinh(ix)
2i i

sin(x) & x

cos(x) = %(e[" + ™) = cosh(ix)

x2
cos(x) ~ 1— 5
sin(a + f) = sina cos f + cosa sin
cos(a + ) = cosa cos f F sinasin f
sin(2a) = 2 sin & cos «
cos(2a) = cos*(a) — sin’(a) = 2 cos’* (@) — 1 = 1 — 2 sin’(a)
cos(a) + cos(f) = 2cos[%(a + Al cos[%(a - Ml

A cos(wgt — 6g) = C; sin(wyt) + C, cos(wyt)

1.5 Poisson-Klammer und Kommutator:

1.5.1 Poisson-Klammer:

0A 0B dB 0A
{A, B} = ox dp ox dp

1.5.2 Kommutator:

[A,B] = AB — BA
[x,p] = ih
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2 Komplexe Analysis: Sparky

2 Komplexe Analysis:

2.1 Komplexe Differenzierbarkeit und Holomorphie:

o f 1 Q — C komplex diffbar <=3Jw € C : f(z,+6)— f(zg) =wd +0(| 6 |)
(mit 6 € C,6 — O und a(6) = o(b(0)) & %i_{% % =0)
= 2) = tim L+ D=1
o f : Q — C holomorph < f auf Q komplex diffbar A z — f'(z) stetig auf Q

< f analytisch: f(z) = Z a,(z — zy)" (innerhalb des Konvergenzradius konvergieren)
n=0

Fiir die meisten Funktionen ist es relativ einfach zu erkennen, ob bzw. auf welchem Gebiet sie holomorph sind. Dafiir
miissen Polstellen/Singularititen gesucht werden.

Beispiele:

2_.2
a) f(z)= ZZ_ZZOO besitzt eine hebbare Singularitit bei z = z,
b) f(z) = —L_ pesitzt ein Pol n-ter Ordnung bei z = z,

(z—zp)"
1

¢)f(z) = e* besitzt eine wesentliche Singularitiit bei z = z,

2.2 Cauchy-Riemann

Sei f(z) = U(x,y) +iV(x,y) mit z = x + iy, dann lassen sich unter der Annahme, dass das Limit von f(x,z) unabhingig
davon ist, von welcher "Richtung"(im Sinne der komplexen Ebene) man sich annihert, die Cauchy-Riemann-Gleichungen
aufstellen:

Reele Achse: Imaginére Achse:
Sz W= f(z) _of _ o [t -G _1of of| _of
R3~—0 h 0x |z, R3A—0 ih i 9y |z, x|z,  0Ylg,

Und damit die Cauchy-Riemann-Gleichungen:

o, U(x,y) =0,V (x,y) A o, V(x,y) ==-0,U(x,y) ‘

Weiter gilt:

« Cauchy-Riemann-Eq. < 0, f = %(ax +id)f =0

« Funktionen, welche die C-R-Eq an einem Punkt z, nicht erfiillen, sind (an diesem Punkt) nicht komplex differenzierbar
und somit auf keinem Gebiet Q > z; holomorph.

« Gelten die C-R-Eq in einer offenen Umgebung, so ist f dort holomorph (bzw. wenn f komplex diffbar ist und die C-R-Eq
mit stetigen partiellen Ableitungen erfiillt).

2.3 Analytische Funktionen:

Es wurde bereits kurz erwihnt, dass Analytizitdt und Holomorphie dquivalent sind: Lisst sich eine Funktion um einen
Punkt z,, "tayloren’, so besitzt die Funktion (im Allgemeinen) in dessen Umgebung keine Pole.

Die Funktion ldsst sich dann wie folgt schreiben:

f@ =Y aG-2" . 4=/ PG

n=0

7 HoMa3 - WiSe 2025/26



2 Komplexe Analysis:

Sparky

2.3.1 Analytische Fortsetzung:

Am Einfachsten lisst sich das Vorgehen fiir die analytische Fortsetzung (sogesehen eine Taylorentwicklung fiir den Teil
der Funktion, der an dem ausgewihlten Punkt holomorph ist) an zwei Beispielen erkliren. Hierbei kann die Definition der

geometrischen Reihe ] ., x" = ﬁ (welche fiir | x |< 1 konvergiert) hilfreich sein.

Um gz, : L _ L
— 01—z (I =2zp) +(zg— 2)
_ 1 1
- _ z—2z
(1 ZO)l—(q)
_ 1 (Z—Zo)k
(I=z) &b (1 = zp)*
1 1 1 1
Um z, = -+ =-+=
20 z 2-z z 21_§
1 1 Z.\k
=—+520)
z 2,{2202

2.3.2 Laurent-Reihe:

Um eine Funktion vollstindig zu zerlegen reicht es oft nicht aus, nur ihren analytischen (’gut taylorbaren’) Teil zu behan-

deln.
Die Laurent-Reihe ist im Allgemeinen wie folgt definier

o

Z c,(z — zp)"

n=—oo

Hierbei wird der Teil mit n < 0 als Hauptteil (welcher fiir z = z divergiert) und der Teil mit n > 0 als Nebenteil (welcher

firz € B,0 (zo) konvergiert) bezeichnet.

Im weiteren Verlauf der Vorlesung wird sich herausstellen, dass der Wert c_; fiir die komplexe Analysis von grosser Be-

deutung ist.

Den Hauptteil bestimmt man beispielsweise iiber eine Partialbruchzerlegung oder Ubertragung bekannter Strukturen.

Partialbruchzerlegung:

x2

X)) = —

/) x2+2x+1
_ X 42x+1 2x+1
x+1?2  (x+1)7?

_ 2x+1
(x+1)?
Ansatz:
2x+1 A B

. 2
G+I2 D a2 [+ D)

2x+1=Ax+1)+B

1) 2x = Ax
2) 1=A+B
2 1

= f(x)=1- +

76 (x+1)  (x+1)?
Ubertragung:
1
ez = —'—n

>0 nz
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2 Komplexe Analysis: Sparky

2.4 Kurvenintegrale:

Fiir ein Integral entlang einer geschlossenen Kurve, muss eine Funktion gefunden werden, welche den gewiinschten Weg
definiert.

Fiir eine stetige Funktion f(z) muss also eine stetig diffbare (und ggf. simple und geschlossene (y(a) = y(b))) Funktion
’z — y(t)’ gefunden werden, welche den Integrationsweg definiert.

Mity : [a,b] — C gilt:

b
/f(z)dz=/ F@)yr@)de
y a

Das Integral kann hierbei auch in mehrere Teile mit verschiedenen Funktionen y aufgeteilt werden:

Wenn man beispielsweise auf geradem Weg von z=-1 zu z=i, dann von z=i zu z=1 und zuletzt von z=1 zu z=-1 geht, ist
es sinnvoll, das integral in 3 Teile aufzuteilen. Der erste Teil kann hierbei durch y(t) = (f — 1) + it mit ¢t € [0, 1] definiert
werden. Hierbei spielt die Umdrehungsrichtung (und damit Vorzeichen) eine grosse Rolle.

Bei manchen Wegen bzw. Funktionen ldsst sich einiges an Zeit sparen, falls man die Polstellen kennt, die sich INNER-
HALB des Integrationspfads befinden. In diesem Fall kann der Residuensatz fiir alle eingeschlossenen Pole verwendet

werden.

Spezialfall: Kreiskurve

Fiir eine Kurve Cg(z() bietet sich folgende Substitution an: | y(¢) = z, + Re'", y : [0,27] - C

2.5 Cauchy:
2.5.1 Cauchys Theorem:

(= keine Polstellen innerhalb der Kurve)
e f : Q — C holomorph auf A C Q, A offen (und A kompakt), dA geschlossen

/ f(2dz=0
0A
Anders formuliert:

 f holomorph, einfach zusammenhingendes Gebiet (bildlich erklirt: jeder geschlossene Weg in Menge kann auf ein
Punkt zusammengezogen werden/ es gibt keine (nicht beinhalteten) * Inseln’ in der Menge), y geschlossen

= /f(z)dz=0
v

Wichtiges Beispiel:

/ Z"dz = 27is,
Cr0)

2.5.2 Cauchys Integralformel:

« mit den gleichen Bedingungen wie fiir Cauchys Theorem gilt Vz, € A:

=> | ag(zg) = f(zy) = L/a de

271 Joa (W — zg)

(Hierbei kann 0A beispielsweise der Rand eines Kreises (also Cg(z)) sein)
Hieraus folgt auch:

(n)
— [ a,(z0) = T (z9) = = / ORI
0

n! 271 Jou (w — zg)t]

2.5.3 Mittelwertseigenschaft:

Mit z — z, + re'? folgt direkt: f(zg) = % 02” f(zy+re®)do

9 HoMa3 - WiSe 2025/26
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2.6 Residuen:

(nicht holomorph, Pol in Kurve)
Sei f : U — C eine meromorphe Funktion in einer offenen, simlpy connected Menge U C Cund z, € U.
Dann gilt fiir ein Pol z, der Ordnung n :

n—1

& (2= 2"/ (2)

lim
(n—1)! z-z5 dz»

Weiter gilt fiir die Funktion f : U — C mit den Polen z;, € Bg(zy) C U (0Bg(zy) = Cr(zg)):

Res(f, zy) =

/ f(2)dz =2mi ) LiRes(f,z)
Cr(zp) k

Anmerkung:
I, gibt an, wie oft und in welche Richtung die Polstellen umkreist wurden. Hierbei bekommt e/* ein positives Vorzeichen
(gegen den Uhrzeigersinn) und e~'* ein negatives.

2.7 Meromorphie:

Definitionen fiir Meromorphie:
« S c U diskret, f : U\ S — C holomorph und bei jedem s € .S ein Pol => f meromorph auf U
o f, % oder beide holomorph

Sei f(z) meromorph mit der Polstelle z, und g(z) holomorph (bei z,), dann gilt:

) gDz
f(z)= m = Res(f, zg) = W =a_,

2.8 Reelle Polynome:

Fiir Integrale iiber die reelle Achse muss darauf geachtet werden, dass beim Schliessen des Integrationswegs iiber die
komplexe Ebene der hinzugefiigte Halbkreisbogen verschwindet. Dariiber hinaus muss auf die Form der Funktion und auf
die Lage der Pole geachtet werden.

2.8.1 Form des Integrals:

N
2ri Z Res(f,z,,) a>0 schliessen iibere obere Halbebene

© P(X) jax _ n=1
f_oo Q(x)e dx =3

N
—2ri Z Res(f.z,_) a<0 schliessen iibere untere Halbebene
n=1

2.8.2 Verschwinden des hinzugefiigten Kreishbogens:

R
/f(z)dz=/ f(x)dx + f(2)dz
r -R Hp,

Grobe Abschitzung:
— lim f(2)dz| < lim / | f(z)|dz—0
R—o0 Hp, R—00 Hpy

+

mit z - y(t) = Re" :

=>‘ f(2)dz Rf(Re™)

Hpy

<z lim sup
R=00 te0,2]

<z lim ‘Rf(R)‘ -0
R->x

10 HoMa3 - WiSe 2025/26



2 Komplexe Analysis: Sparky

Hierzu bietet es sich an ’Sample 3, Exercise 1’ im HoMa Skript anzuschauen.

2.8.3 Residuenrezept:

Folgende Schritte bieten sich an, um Integrale mit dem Residuensatz zu 16sen. Das "Rezept’ stellt jedoch noch keine ma-
thematische Begriindung fiir dessen Anwendbarkeit dar.

0) Ausgangspunkt:

P(Z) eiaz

0%) ,a € C ,deg(Q) > deg(P)

I=/ fodx,  f(z) =
1) Konvergenz:

a) Az € R, s.d. Q(z) = 0 (also keine reellen Polstellen)
b)a e R

c) deg(Q) > deg(P) +2

oder:

b a#0,a €R

c*) deg(Q) > deg(P) + 1

2) Berechnung mit Residuensatz:

a) « = 0 : Entwedere untere oder obere Halbebene schliessen (bei unterer noch ’-’ Vorfaktor)
ba#0:a>0->H,a<0->H_

OI=x2zi ) Res(f.2)

Pol Z€H+/_

2.9 Reelle Pole:

Befindet sich ein Pol auf der Reellen Achse (/dem Integrationspfad), so muss er zunéchst ein bisschen (e€) verschoben
werden.

Beispiel:
2enspie | e—iwz_{’>0=”mw<0
w?=p? t<0=>Imw>0
e —— L = iex | p|
(w+ie)? — p?
A 1
G = ,w=+iex|p]|

C (w—ie)? —p?

GFom : w=xiex|p]|

2.10 Steepest descent (+Asymptotik):

2.10.1 maximum modulus principle:

f ¢ U — C nicht konstante holomorphe Funktion in U (open, simply connected).
Dann: If(z)| hat kein Maximum im inneren von U:

VzeU AV6>0, Jow € Bs(z)NU s.t. | f(w)| > | f(2)]

— supremum (max.) kommt nur auf dem Rand oU vor

2.10.2 Einschub: Laplace’sche Methode:

b
I(x) = / e Dg(t) dt

f stetig und globales, eindeutiges Minimum bei ¢y € (a,b) fiirt # ¢y :  f() > f(ty).
Weiter sei f € C¥, k > 3, in Umgebung von ¢, , f"'(ty) > 0.
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2 Komplexe Analysis: Sparky

Dazu sei g beschrinkt auf [a,b], g(ty) # 0: 3A > 0, n > 0s.d. |g(t) — g(ty)| < Alt — tO|2 Vt € (a, b)
Dann:

I(x) = % e Wg(ty) (1 +O(1)) | (fiir x = o0)

Bemerkung:
F@6)= fltg) + f1t)t = to) + 5 [ (o)t — 1) + ... (mit f'(tg) = 0 (Minima))

e~/ Maxima bei f(f) Minima

— das am stéirksten gewichten

— dann Taylorn

— g(t) setzen

— dann wieder auf ganzem Bereich integrieren

2.10.3 Sattelpunktmethode:

f(x,y)=u(x,y)+iv(x,y) mit v,ue R, f holomorph

Orthogonalitiit:

Kritische Punkte:
1 . 05 f=0 (holom.)
a,f =§(ax_,ay)f =0}————— du=0du=0,v=0,v=0
Z=Zc Z=Zc

— Kiritischer Punkt von f ist Sattelpunkt fiir Re(f)=u und Im(f)=v

Hessian:

...(script p. 191 ff.)

Integral:

I(z) = [ dz e/, f(z)=u+iv holom. (da wo holomorph alle Integrale iiber Wege gleichwertig) = VuVo =0
= Kurven v(z)=const. (— stationidre Phase = steilster Weg) sind Gradientenlinien von u(z)
< neuer Weg: C — C;, wo v(t)=const.=v

I(x) = ' / dz '@
Csd

= Laplace-Methode verwenden (Taylor um x, + Gauss-Integral)

/dx M) = g=h(xc) / dy T V=00 o hix) 2 (I+..)
n'(x,)
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3 Hilbertriume: Sparky

3 Hilbertraume:

3.1 Definition:

normierter Raum (X,|| - ||), mit X in Normtopologie vollstindig (jede Cauchy-Folge konvergiert in der von der Norm
induzierten Metrik) und einer zusétzlichen Struktur: Skalarprodukt (induziert Norm)

3.1.1 Vollstindigkeit:

Fiir eine Folge (x,,),en von Elementen eines metrischen Raums (M,d), (wobei oft d(x,, x,,) =[| x, — x,,, |]), gilt:
Cauchy-Folge: Ve > 03IN e NVe,m > N : d(x,,x,) <€

Konvergiert: Ve > 03N e NVn > N : d(x,,x) < e, wobeix € M.

Vollstiandigkeit:
Jede Cauchy-Folge konvergiert.
Hierbei ist es wichtig zu kontrollieren, dass der Grenzwert der Folge auch wirklich in der Menge selbst liegt.

AuBerdem gilt: Konvergent = Cauchy-Folge

3.1.2 Bedeutung:

Verkniipfungen:
e oft + und -

Fiir +:
« Neutrales Element (0)
o Inverses Element (-v)

Fiir -:
 Neutrales Element (1)
« Verkniipfung mit 0 (entweder 0 aus VR oder 0 aus Korper) fiihrt zu 0 (aus Vektorraum bzw. Hilbertraum)

Norm || - ||

*llvl=0

ev|=0=>0v=0

|l Av =l Al v |l

ellv+w L] vl + || w| (Dreiecksungleichung)

3.2 Skalarprodukt/inneres Produkt:

= (z|lw) = Zle ZH

Teilweise wird die komplexe Konjugation auch auf das zweite Argument definiert.

Dariiber hinaus ist nicht jedes innere Produkt/Skalarprodukt iiber eine Summe der Komponenten definiert. Im Verlauf der
Vorlesung wird noch die Definition iiber ein Integral aufkommen. Wichtig ist es auch, im Kopf zu behalten, dass Normen
im Allgemeinen nicht nur in Form einer Summe oder eines Integrals auftreten konnen.

o | {x|y) | < oo (wohldefiniert)
o (x]|x) > 0 (positiv)
o (x|x) = 0 = x = 0 (non-degenerate)
o (x|y) = W (hermitesch)
* (xlau + pv) = a(x|u) + f {x|v)
(ax + Bylu) = & (x|u) + B (y|u) (Sesquilinearitit)
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3 Hilbertriume:

Sparky

3.3 1/L-space:

I-space: L-space:
‘ — f®

> —

P={pen : 1n €K, T2 11, P<o0})  —  LPAX,K)={f: X - K| f messbar, [ | f(x) [P dx < oo}

1
I x M= (X2 11, 1P — I f = | £GP dx)?

[® ={{t)hen : 1 €K, (t,),en beschrinkt}, mit || (7,),en o= supll?,] : n € N}

3.4 Gram-Schmidt:

Ziel hierbei ist es, aus einer gegebenen Menge an Elementen eine orthonormale Basis zu berechnen. So kann das erste
Element (im normierten Zustand) als erstes Basiselement verwendet werden. Darauf aufbauend werden die dazu unab-
hingigen Anteile des néchsten Elements (im normierten Zustand) zum nichten Basiselement. Dies wird dann solange

weitergefiihrt, bis jedes gegebene Element angepasst wurde.
k
Jhat = Xpqy = Z (erlxpy1) e #0
I=1

ek+1 = = (ek+/|e,> = 0 Vl (S {1,k}
I Srgr |l

3.5 Ungleichungen:
3.5.1 Dreiecksungleichung:

Ho+wl<lloll+]wll]

Beweisskizze:

Il x+yll=(x+ylx+y) =l x 1>+ |y I* + xly) + lx)
=[x I* + I y I +2Re({x|y))

mit: | (x|y) | = VRe(...)2 + Im(...)> > Re({x|y))
[ Gely) E=1x Dy Il Teos@)] <11 x 111 v I

folgt: | x+y I <l x 11>+ 1 y I> +2 I x I1ll y I

=l x I+ 1y ID?

3.5.2 Holder-Ungleichung:

ayxell, yer® = xyellund||xyll; <l xly Iyl

-]

+o=l.xelr . yelr = xyel ud|[xyll <l xl,llyl,

b)l<p<o,

-

3.5.3 Cauchy-Schwartz-Ungleichung:

G < x Iy Il

3.5.4 Parallelogramm-Gleichung:

Hlx+y P+ lx—yIP=20x 2420 yIP

Beweisskizze:
((x1x) + YY) + (x|y) + (lx) = (xly) = plx) + (xlx) + Gy =2 [ x 2 +2 | y II?
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4 Operatoren:

Sparky

4 Operatoren:

4.1 Definitionen:

4.1.1 Linearitit:

L(X,Y) :={T : X - Y | T ist linear und stetig}

- A, BeL(X,Y),a,feK: (¢A+ B)(x) = aAx + Bx
= [ Afax + fy) = aAX) + AQ) |

4.1.2 Eigenwertgleichung:

Ax = ax

4.1.3 Operatornorm:

Il Ax ||
Il A ll,p= sup
P xev x|l

Ausserdem gilt mit T € L(X,Y), Se€ L(Y,Z)=> ST € L(X, Z):
ST Mlop < 1S Hopll T llop

Beschriinktheit:

Sei T linearer Operator. Dann gilt:

T beschrinkt < T stetig

Tbeschrinkt & mit M € R : IM >0 Vxe X : || Tx||<M-| x|

Beispiel:

SeiT :d—d, (,)en ~ (niztn)neN mit # # 0 ein (linearer) Operator.
Dann gilt fiir die Operatornorm (mit Supremumsnorm):

1
” T(tn)neN ” = ” (ﬁtn)neN ” S 1 ” (tn)neN ”
NTll,=1=M

4.1.4 Selbstadjungiert:

Sei A ein linearer, beschrinkter Operator.

Im Allgemeinen gilt dann: | (Ax|y) = (x|ATy)

Gilt nun weiter: A = AT und D(A) = D(A") (wobei D(A) der Definitionsbereich von A ist), so bezeichnet man den

Operator als selbstadjungiert.

Damit folgt fiir selbstadjungierte Operatoren: ’ (Ax|y) = (x| Ay) ‘

4.2 Spektraltheorie:

Sei X Banachraum und A € L(X) linearer Operator.

4.2.1 Spektrum:

’ o(A) = C\ p(A) = {Eigenwerte} ‘

4.2.2 Resolventenmenge:

’p(A) = C \ {Eigenwerte} ‘
={zeC: I3z-A e LX) +0

15
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4 Operatoren:

Sparky

4.2.3 Resolventenabbildung:

Ru(z)=(z— A"

Alternativ wird sie auch mit (A — z)~! definiert. R 4(2) ist holomorph auf p(A).
Die Inverse (in endlichen Dimensionen) 1dsst sich beispielsweise iiber LGS oder die Cramersche Regel bestimmen.

LGS: z—ap —ap —a;z |10
—dj Z—day —d)3 0 1
—asz —as Z—das3 0 0

Cramersche Regel:
(~D™*i(z - A,
det(z— A)

(z-A)" =

(z—A)!

— o O
[ R
S = O
- o O

Hierbei stellt (z — A);‘i die Unterdeterminante von (z-A) dar, bei der die j-Zeile und i-Spalte gestrichen wurde.

4.2.4 Wichtige Formeln:

Folgendes wird zum Teil Zusatz zum besseren Verstindnis des Nutzens des Spektralsatzes sein.

Mit: X BR, dim(X) < o0, A, B € L(X), Yz € p(A) N p(B)

Erste Resolventengleichung: R ,(z') — R,(z) = (z — Z/)R4(2)R4(2")

Zweite Resolventengleichung: Rp(z) — R4(2) = R4 (z)(B — A)Rp(2)

Lemma:
1= L R,(2)dz
B 2mi |z|=r A
1
A= E o zR4(2)dz
P(A) = L-/ P(z)R,(z)dz (Polynome)
2ri |z|=r
Laurentreihe R 4(z) :
Ry(2)= ) A (z= A
neZ
Ry(z— E+ D) =R,A+&=RE = ) AL"
nez
>4, = = eI RE)de

L 231 Jig=r,

DP=A_ =3[ REdE
« Projektor: P2 = Py

¢ Residuum

* ZL:l P=1

hd PkPk’ = 5kk’Pk
cA=A"= P =P

2)D=A, =5 [EREdE

e D™ = ( (nilpotent)

« Pole hoheren Grades (fiir einfache Pole D; = 0)
e P.D, = D, P, = D, (kommutieren)
«A=A"=>D, =Dl =D, =0

3)S=A4y= - %d‘f;

2xi
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4 Operatoren: Sparky

l my—1

. 1 1 !
Laurentreihe: | R ,(z) = P+ —— D
o 2= & e

!
Spektralzerlegung: | A = Z(/lkPk + D))
k=1

FirA=A"=>A=%!_ 4P = \ fA) = fADP + ...+ [(Q) Py \

Hiermit Lisst sich beispielsweise e/ fiir selbstadjungierte Matrizen einfach bestimmen.

Beispiel (Laurentreihe und Spektralzerlegung):

24i -1 0 1 00 1 -1 0 0 00
M=| 1 i 0]=(1+)H|0 1 Of+|1 -1 0f-3]10 0 O
0 0 -3 0 00 0 0 O 0 0 1
' (z—-i)(z+3) —(z+3) 0
=> Ry(z) = — (z+3) z+3)z-2+1D) 0
I+ =D+ 0 0 (z—Q+D)z=i)+1
Pole:
z+3)[(z-2+iNz-+1]=0
= Doppelte Polstelle: z; = (1 +i), m; =2
= Einfache Polstelle: z, = =3, m, =1
) (z—-i)z+3) —(z+3) 0
= Ry(2) = - (z+3) (z+3)(z-Q2+1) 0
M (z—(1+)2(z+3) 0 0 (2= (1 + D)
| (z=i)+1-1 -1 0 | 0 00
= 1 z-A+1+0)) Of+ 0 00
(z—(1+10))? 0 0 0 (z+3) 00 1
| 1 00 | 1 -1 0 | 0 00
=—— |0 1 0|+ ——— |1 -1 O+ 0 0O
=0+ g o of E-T+D?|y o of E*+I|lo o 1

Alternativ ldsst sich die Zerteilung (falls nicht offensichtlich) auch tiber die verschiedenen Integrale der Matrix(elemente)
und anschliessendem Einsetzen in die Formel der Laurentreihe bestimmen.

4.2.5 Spektralsatz dim(X)=co:

Spektren:

a) Punktspektrum:

Ixe X\ {0}, 1eC AeRfird=A"): Ax=ix
> (A—-—A)x=0 A x#0 (nichttriviale Losung)

= 1 — A nicht injektiv, A(4 — A)~!

b) stetiges Spektrum:
= A — A injektiv , nicht surjektiv und ran(4 — A) (Bildraum {(1 — A)x : x € X'}) dichtin X
=>z.B. (X)) =xf(x)

¢) Restspektrum:
= A1 — Ainjektiv, ran(4 — A) # X
= leer fir A = AT

Spektralsatz:

H Hilbertraum, A € L(H), A = A"

Dann existiert eine Familie orthogonaler Projektoren (Z 4(1));cr (’Spektralschar von A’), sodass:

A Z 0 =0firt<—||AllundZ, () =1fiirz>|| A

b)s <t =X, 08) K Z 0 und Z4()Z4() = Z4(Z4(5) = Z4(8)

c)Vy € H . u/=/u/d2A(t)undAu/=fty/dZA(t)

d) Funktionen ¢ und A sind definiert, wenn sie fiir jedes t € [— || A ||, || A ||] definiert und messbar sind: ¢(A) =
J &) dZ ()
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5 Lebesgue Integrale: Sparky

5 Lebesgue Integrale:

5.1 ’Funktionen’:

5.1.1 Lebesgue:

— jede abzdhlbare Teilmenge von R ist Lebesgue-Nullmenge (m({x}) =0, x € R)
— eine abzihlbare Vereinigung von Nullmengen ist wieder eine Nullmenge

m(U X;) < Z m(X;) (Fuer X; n X; = @ (i # j) (paarweise disjunkt),... wird” <’ zu ’=’
i=1 i=1
k

= Z |b; — a;| (Fuer endlich viele (k) Intervalle und jedes X ist Intervall [a;, b;])
i=1

m(Y) < m¥ N X)+m¥ \ X)

vi@) =0
V(Al) + \/(Az) = V(Al U A2) + V(Al N Az)

5.1.2 Zahlfunktion (/-maf) auf R:
#A A endlich
u(A) = {

sonst

dy = , N>R, bs konv.
/ny ;f(”) f Zf(n)as onv

5.1.3 Dirac auf R:

1 X0 eA
0
/ lgx)dx=m(XNnQ)=0
X
_ f(xo) XO (S X
Sy F() db, (x) = {0 e

5.1.4 Simple function:
n

S(x) = Z a;1,(x) .4 €Ry
i=1

n

1 dx = m(X NA,;
/X(;a, A, () dx =) a;m(XnA)

i=1

5.1.5 Compact support:

CXR,C)={f : R — Cglatt (co diff), f(x)= 0 ausserhalb}

suppf = {x|f(x) # 0}
(Also das Intervall, auf dem die Funktion f nicht O ist)

5.1.6 Bump Funktion:

1
eXp(_l—xZ) |x] <1
0 |x] <1

n(x) =
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5 Lebesgue Integrale: Sparky

5.2 Lebesgue-Integral:

/f(x)a’x<oo
X

i) | f() = /1)~ /()]

~

Fiir folgende Integrale muss jeweils i) gelten: [, fdv= [, f*dv— [, f~dv
Dies Bedeutet, dass Integrale wie f_ozo sin(x)dx = 0 nicht Lebesgue-integrierbar sind, da die Aufteilung in Integrale ober-
und unterhalb der x-Achse (f* und f ) divergiert.

iii) v(x) = 0, f messbar: / f(x)dv=20
X

S/ |f ()l dv
X

iv)f, |f| € L(f,v) : ’/Xf(x)dv

V)

5.2.1 Satz der dominierten/majorisierten Konvergenz:
» f, messbar? (stetige Funktionen sind messbar)

e lim f,(x) = f(x) messbar?
n—oo
e dg(x) > | f,(x)| Vn, / g(x)dx < o0 = Lisst sich eine L.-int.bare Majorantenfunktion g(x) finden?
X

5.2.2 Monotone Konvergenz:

e fn : X > R,y messbar? (stetige Funktionen sind messbar)
o f,(x) L fu1(x)  Vx (punktweise)?

» lim £, = f(x) inRU {o0}?

(dom. Kon. bzw. monotone Konv.) = lim/fn(x) dm(x)z/f(x) dm(x) A f L.-int.

vi)

5.2.3 Fubini:

 v; measure auf X , v, measure auf X,

e f(xy,x,) messbar mit v; X v,

* X, X, o — finite (note: p([0, 1]) = oo nicht o-finite)
o falls < oo (sonst | f|) :

Fublnl=> / d\/l( d\/2 f(xl,)C2)) = / d\/2( dVl f(xl,xZ)) = / d(\/l XVZ) f(xl,xZ)
X X,

X, X, XXX,

vii) Riemann int. 3 (nicht Pol, uneigentlich, ...)

» messbare, kompakte Funktion
S endl (e.g.: C R, [0,00) U {o0})

< fTund f~ getrennt =>/f+/_(x)dx<oo
X

& endliche Unstetigkeiten — aufteilen, raus nehmen
< f messbar (stetig?), | f| uneigentlich Riem. = f Lebesgue-int. = f Uneigentlich Riemann (nicht | f |)

|
(/1 Sdx=1)

Ziel ist es, die Integrale so lange zu bearbeiten (begriindet!), bis man sie als Riemann-Integral berechnen kann.
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5 Lebesgue Integrale: Sparky

5.2.4 Beispiele:
Satz der dom. Konv:
_ nsin ( )

f”( x) = x(x2+1)
1.) f,, messbar

2.) (L’Hopital fiir g(x)=1/n und f(x)=sin(x/n))

, [—m, 7]

nsin(%) xcos(%) 1 X 1
hmf(x)—l —— = lim n lim co ( )=
n—>o x(x2+1) nooo ”2% x(x2+1) x(x2 + 1) noo x2+1
n

3.) f(x) messbar
4.) Ag(x) 2| f,,(x) | Vaund g(x) mtegrlerbar

nsm( ) n
=10 1=l 77 1=l s F x2+1 |=g(x)
(theoretische Polstellen wie x=0 lassen sich einfach aus der Integralmenge herausnehmen)

. !
5.) nlgglo Cenl Su(x) dm(X) =(gom. konv.) ,/[_,; . 241 dm(X) =(Riemann int.) [ ——— dx = 2arctan(x)

2 x2+1

Monotone Konvergenz:

(@) = xexp(=5) , x € [0, )

1) f,(0) = (f - Lig ) () ——> f(x)
2) frp1 () > £,(%)

3) fu(x) dm(x) = / f(x)dm(x) = / xe_g dm(x) = /" xe_% dx=1- exp(—n—z) < o0
[0,00) 0,n] 0

4.) Monotone Konvergenz — f(x)dx = hm fa(x)dx = hm (1 — exp(——)) =1
[0,00) [0,00)

Weiteres Beispiel:

xe€[0,1)

(lim, o) =

= =

x=1

=> f[O,l] f= /[0,1) f =1 (Einzelne Punkte lassen sich ohne Einfluss entfernen und wieder hinzunehmen)

Fubini:
f :1(0,1)x(0,1) - R sei gegeben durch:
1
= falls x < y
fy =17
- falls x > y
X

Ziel wird es sein, die beiden folgenden Integrale zu bestimmen und aus derem Vergleich (Schlagwort: Fubini) eine Folge-
rung beziiglich der Produktmessbarkeit der Funktion f(X,y) zu machen. Argumentationen, warum Lebesgue-Integrale als
Riemann-Integrale berechnet werden konnen, sind notwendig!

y 1
L) ( fx.) dm(x)> dm(y)=/ [/ id'ﬂ(x) / izdm(X)]dm(y)
0,1) 0,1) ©0,1) 0 y y X
=/ [ly—[—l]l]dm(y)
.1 Ly? Xy
=/ dm(y) =1
©.1)
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6 Schwartz-Raum:

Sparky

X 1
2) ( f(w)dm(y)) an( = | [— [ Sano+ [ %dm(y)]dm(x)
0.1) .1) (0.,1) 0o X x ¥
1 141
= /«)’1)[— ;x+ [— ;]x]dm(x)

= —/ dm(x) = -1
.1

3.) Da die iterierten Integrale unterschiedlich sind, ist f(x,y) nicht produktmessbar.

6 Schwartz-Raum:

6.1 Definition:

S(RnsC) = {f € Coo(Rn’C) | Vasﬂ € Nnv ” f ”a,ﬂ< 00}

Il f llop = sup [x%0” f(x) , lim (x*0’ f(x)) =0
xeR? | x| >0

a _ a0 B _ P13
X =x0x 0" =0y 0.

6.2 Beispiele:

1) f] (X) — e—SiX—)c2
Schwartzfunktion, da fiir x — +oco schnell genug gegen 0 und stetig (+ stetig diffbar)

5 X

o S . . 2 .
— ¢ > mit x € R auf Einheitskreis — Betragist | — e * iiberwiegt

2) frx) = e

keine Schwartzfunktion, da e % fiir x — =00 nicht — 0

3.) f3(x) = e
keine Schwartzfunktion, da Ableitung nicht stetig (fiir O nicht definiert)

4) f4(x) = H;&

keine Schwartzfunktion, da fiir x - —o0 @ f5 = 1

d 2
5. — (38 \3,—x
) J500) = (= )e
Schwartzfunktion, da Exponentialanteil {iberwiegt

vorderer Teils auf ein Polnynom P(x) mit Grad 6 zuriickgefiihrt werden kann

m&m=é

keine Schwartzfunktion, da per Definition: | llim (x“aﬁ f(x)=0
X|—00

abermita =2und f =0 = lim (xzi) = lim (D)=1#0
| x| >0 _xz | x| >0
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7 Fourier:

Sparky

7 Fourier:

7.1 Fourier-Reihe:

7.1.1 Definitionen:

fO) = f(T)
f)= Z (e,|f)e,(x), x€[0,T]
nezZ
T+a
ealf) = / Q@ dr, =%
O+a

e,(t) = €L exp(ionx), ne€Z = (e,le,)=0n—k)
T

=>| f(x)= % + Z a, cos(nx) + b, sin(nx)
n=1

1 2z

a,=— f(x)cos(nx)dx
T Jo
1 2r

b,=— f(x) sin(nx)dx
7 Jo

df d
Tx Z (eqlf) e

Definitionen wie Vorfaktoren (2,...), Integralgrenzen, Koeffizienten oder Basiselemente kdnnen unterschiedlich ausfal-

len (Konvention).

7.1.2 Parsevals Identitit:

T
| vropar= 3 17608

kezZ

7.2 Fourier-Transformation:

7.2.1 Definitionen:

F(f)p) = / fx)e ™ d"x = f(p)

Pl (@)0) = / (271r)ng(p>e"”‘ d"p = §x)

d dip . ..
G, x) = / ﬁ ﬁe 10IPX G (w, p)

Hierbei kann ebenfalls die Definition fiir den 2z Vorfaktor oder das Vorzeichen im Exponenten unterschiedlich (je nach

Konvention) ausfallen.

7.2.2 Beispiele:
2y
p*+r?

i) £(0) = 1_pr (00— f(p) = % sin(pT)

D)=L fp) =
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7 Fourier:

Sparky

7.2.3 Regeln:
| 7( j"n Np) = () F()p)
X

Achtung: wenn F mit e'?* defininert wurde — F(0" ) = (=1)"(ip)"F

i) [F("f)=i"0) f(p)

i) | Fe**) k) = 228K — k)| = / dp e7PXX0) = 278(x — x;)

Achtung: wenn F mit 2L definiert wurde —s F(e'X*)(k) = s(k' — k)
T

fx)=1- / ;—’; fe** =1 — fk)=6k)2n — / dx e” 'k = §(k)2x

iv) [(/12) = FOODIF@®) |
< (FH@P)e®) = ($IF ()(0)

v) [ (f % g)(x) = /f(u)g(x — u) d"u | (Faltungsintegral)

<[P % 00 = f e
1 el F(g)
p2+1)_F (p2+1)

< FUF @) * P

7.2.4 Parsevals Theorem:

/If(t)lzdt=%/ IF(f)@)|* do

[eo]

7.2.5 Zeit-Verschiebung:

F{f(@t—1ty} = F(w)exp(—imty)

7.2.6 Skalierung:

Flf@n) = 5 F(2)
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8 Distributionen: Sparky

8 Distributionen:

8.1 Verschiedene Arten:

8.1.1 Temperierte Distributionen:

Temperierte Distributionen sind stetige, lineare Funktionale auf dem Schwartz-Raum (stetige lineare Abbildungen T :
S(R") — C). Die Menge der temperierten Distributionen bildet den Dualraum T € S’(R"). Wichtig ist, dass sie nur auf
Funktionen mit bestimmten Eigenschaften (Schwartzraum = £ (+o00) = 0) angewendet werden.

Es gilt:

= T¢(f)=(¢,f)=/¢(X)f(X) d"x

i) (ho, f) = (¢, hf) Vf.hf €S

i) 07, f) = (¢, (-D)P167 1)

iii) (F(#), f) = (6. F(f))

WV (pxf.9=@f *xg . f(x)=f(-x)

8.1.2 Dirac-Distribution:

’ b
= (6x0,f)=/ S(X—Xo)f(x) dx|= {f(x()) er[a, ]

0 Xo €& [a, b]

Anmerkung:
/ Leipxo(e—ipx’f) dp — i //dp dx eipXOe—ip)Cf(x) — f(-x()) v/
2r 2w

dn .
" / 2—pe_”’(x_X0) =8(x — x)"" # (Integral existiert so eig. nicht)
7

Umgang mit Distributionen:

d d
(Lby0 )= / S5, dx
= [f(x)axo] - / S =3 ([N dx[(f €S~ Sz =0)
- 4
= G )
d /
= (Eéxo’ f) = _f (XO)

8.1.3 Heaviside-Distribution:

1 121

=0, =06(-1)= {0 o
0

=((0,, /)= / S0 di
)

d
= (EG)IO, f) = (510’ f)

> (£t =10)0,), /) = Oy, /)
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9 Fundamentallosungen:

Sparky

9 Fundamentallosungen:
9.1 Adjungierung:

(PO)flg) = (fIPT(0)g)
PO = Y, ho(x)(0° )

PT@)f = ) (=DI"0*(hy(x) /)

9.2 Losungsvorgang:

9.2.1 Homogen:
P(0)G =6 |— P(0)Gy =0 = G + G, (auch Losung)

9.2.2 Inhomogen:

(PO =f > d=Gx* /]

9.2.3 Anleitung:

F d
1) Fourier-space: | P(0)G = 8 |——""="* | p()G(x) = P(d) / d’p

2.) Diff.op.: = ’ p(ax)eiﬁsc _ P(ip)eiﬁ;‘c

‘ a1 _ [ d% 1
3.) Umstellen: | G(x) = F <P(ip)> = (zﬂ.)de P(ip)

Inhomogen:

4.) Riicktrafo: 7~ (¢(p)) = F~HG(p) f(p) = G(x) * f(x)

5.

~

d(x) = /f(x’)G(x —x")d"x' < = / fx=x")G() d”x/>

Anmerkung: Im Allgemeinen befinden wir uns in n Dimensionen, daher sind x, p,...

das deutlich gemacht, sonst wurde darauf verzichtet.

ddp .
(2m)d

ipx

’Vektoren’. Im Exponenten wurde

Man kann hierbei auch etwas anders vorgehen: Anstelle von ¢p bzw. G und f bzw 6 in *Fourier-Form’ zu schreiben (NICHT
WIRKLICH TRANSFORMIEREN!) und den (Ableitungs)Operator direkt auf ¢*” anzuwenden, da im Integral G Ep) nicht
von x abhéngt, kann man auch einer Fouriertransformation beider (ganzen) Seiten durchfiihren und anschliessend Partiell
integrieren (um den Ableitungsopertator P auf die e-Funktion anwenden zu konnen). Die Allgemeine Idee bleibt jedoch,
in den ’Fourier-Raum’ zu gehen, um Ableitungsoperatoren auf die andere Seite zu bekommen’.

9.3 Beispiele:
9.3.1 reines Zeitableitungspolynom:

P(4) =4y — G(w) = — G() = o)

1
(ico)""'l

9.3.2 harm. Oszillator:

1

2
+2y—-+w — = ¥ <o
(dl‘2 ydt ) —1;2+2iyp+a)2 v 0

py =iy = \/w -yl =iy+xw— G@) = ®(t)— sin(wt)
y = 0 divergiert —» Dampfung kontrolliert Peak — Resonanz
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9 Fundamentallosungen: Sparky

Inhomogen:

(d—2 + Zyi + o) =

dr? dt
p=Gx f

e ia(u—t)
= [ O(t)— sin(wi) 7" dt
w

(] e_yt

— eiau/ _(%(eiwt _ e—iwt)) e—i(xt dt
0 w )

iou

e /oo (e—(—iw+ia+y)t _ e—(ia)+ia+y)t)dt

- 210) 0

el L L hier kein Delta, weil d y reell () (N 0)
= — - ier kein Delta, weil w, @ und y reell (?) (Nenner

2iw \ (miw+ia+y) (iow+ia+y) ( @ 4 (™ 7

9.3.3 Laplace:

SHERY 1 e
A= (—) = a( dt() ﬂav)
,Z‘ ox'" \fdetg " e

F((=AY f)(p) = / e P (=AY f(x) dx = / (0> 7P f(x) dx = p* f(p)

Erinnerung Metrischer Tensor:

g=J"J
(x. . 2) 0,x  0px  0.X
T o@bo |5 9 o

0,z 0pz 0,2

Beispiel Kugelkoordinaten:

sin(@) cos(¢p) rcos(@)cos(¢p) —rsin(0) sin(¢p) 1 0 0
J =|sin(@)sin(¢) rcos(@)sin(¢p)  rsin(@)cos(gp) | — g =0 2 0 — det(g) = r* sin?(0)
cos() —rsin(6) 0 0 0 r2sin%0)

9.3.4 Laplace (1D):

(Analog zu Beispiel 1):
Ag(x) = 4mp(x)

A / L oikx ) dkc = / L oikxazo00) dk
2r 2r
/ i(ik)ze"k%(k) dk = / ie"’%np(k) dk <  (ik)*¢(k) —4npk) =0
2r 2r

4z
= 9k = = 5p(k)

. ikx .
— [ Lo Lak=—2 [ < ax k — k — ie oberer Halbebene — x > 0 (|e’**| = e=*Im(k))
2 k2 k2

elkx €x

e
=-2lim [ ———0O(x)dk
=0 ) (k—ie)? )

= =2 lim 27ie“*O(x) lim i(e"’”‘)
e—0 k—ie dk

= 47x0(x)
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9 Fundamentallosungen: Sparky

9.3.5 Poisson eq.:

(—A¥p=p= px) = / G(x — y)p(y) dy

oo TGO
O = R (n =
(e = T+
oL 2emgan I
e < (1-2£In(x]))

9.3.6 d’Alembert:

Mit: (1= 2 612 — A  (im Folgenden c=1)

0)G =6 (note: step 1.) and 2.) is the ’different way’ mentioned earlier)

1.) Fourier: [ dt [ d¥x ¢~ iPX(JG(x,1)) = 1 — G(w,p) = e

2.) Inverse-Fourier: G(t, x) = f / o =L "“”””"wz;_pz

3.) um ie verschieben: damit nur fiir t>0 Losung # 0, [e™/®'| = '1"@) I'm(w) < 0
- w=—iex|p|

- G (w, p) = ———

(w+iey~|pl?

4.) Nullstellen aufteilen: G"(w, p) = ol (w+ ([;le) - — (iel—lpl))

5.) Residuensatz und e —> 0
— G™(t,x) = 1@(1‘)/

eiPX (e—ilplt _ oilplt
(2n)d 2|| (e ™)

Fiir d=3:

6.) Kugelkoordinaten (Jacobi-Determinante!), wobei die Achse passend gewéhlt wird, damit gilt: px = |p||x]| cos(8)

- G"(x,1) = l@(t)/oo (g,l,p)ld |22|1 | /0 do 51n(0)f d(pei|17||x|cos(0)(e—i|1’|t _ ei|P|t)

7) [0°° d|p|(ei|pl(t—IXI) + e—ilpl(t—IXI)) ~278(t — |x|)
. ol (1— [pl==Ipl 0 e
mit: /;)ood|p|el|p|(t lxh 2 7 f_ood|17|e ilpl(t—|x])

8.) 6(¢ + |x|) wird (physikalisch mit t>0, IxI>0) nicht betrachtet

= G(7,1) = —G)(t)&(z b,

9.4 Green’s functions:

Ausgangspunkt:
P(0)p(x) = f(x)
Po)=Y o Na(x)0%  (Koeffizienten A, (x) nicht mehr konstant)

Erweiterung der Fund.-Lsg.: F(x) — G(x,y)
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9 Fundamentallosungen:

Sparky

mit: G(x, y) = F(x — y) ist Greens-Funktion zu einer Fundamentallosung falls diese existiert.

ausserdem: G(x+a,y+a) = F((x+a)-(y+a)) = F(x-y) = G(x,y) (Translations-Invarianz)

Es gilt:
P(0)G(x,y) = 6(x = y)

Fiir A positiver, geschlossener, selbst-adjungierter Operator:

L _ ro —tA
G = Z = Jo dt e
mit: Le'A = —Ae~'A und ¢4 =1
dt
=0 .
o _ [® —tA _ [ _dN,—At _ _ —tA| _
und damit: AG = [V dr Ae™ = [P di(—)e™ A = —e . =1

(script p. 258 ff.)

Weitere Green’s-Funktionen sind beispielsweise hier zu finden: https://tinyurl.com/2utd3acp
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10 Differentialgleichungen: Sparky

10 Differentialgleichungen:

ODE, PDE (partiell) — Ordnung (Grad) — linear ( y(t)2, e’ 4y — homogen (=0)

10.1 Fourier:
L) F(P(di)G(X)) =F(f(x)
X

2) F-UG(K)) = G(x) = r—1<L>
) (G(p) (x)=f(x)*x Pp)

10.2 Initial value problems + Linear ODEs:
10.2.1 Picard-Lindelof:

3 eindeutige Losung, wenn:

« offene Teilmenge

« Trafo stetig — Matrix (Lipschitz-stetig)

|Y(t,x;) = Y(t,%x,)| £ L|x; — x,| (wenn nicht, dann mehrere Losungen) [%x =Y(t,x)
» Anfangsbedingungen

10.2.2 Flows:

Flow: o : IXX - X, ICR, X cRN

forany x € X and 5,1 € I:
¢ 9(0,x) =x
* (s, p(t, x)) = @(s +1,x)

Fixpunkte:
fiir x(t) = Y (x(1)) , x(tp) = xg

Fixpunkt x :

Y (x,) = 0| = stationiire Losung x(f) = x

Stabilitdrsmatrix:
Y =0V, @tx,)
(Erinnerung an Jacobi-Matrix)

e @(t, hy) = h(t) = e~ p
o falls: Y/ = S™! DS (diagonalisierbar) — (Sh())' = eU~0Vi(Sh)’

mit:

eigen-perturbation = Eigenvector von Y’
v; = Eigenwerte von Y:

erelevant : Re(v;) > 0

e marginal : Re(v;) =0

e irrelevant : Re(v;) <0

Beispiel: gedimpftes Pendel:
0(t) = —puo (1) — & sin(0(1))

0= (0,07
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10 Differentialgleichungen: Sparky

Fixpunkte:
b, = (0.0 = (—uw, - £5in(0,) . @)

- w,=0,smn0,)=0,0, =nr (n€Ng bzw. n € {0,1})
=> én =0, no)T (Fixpunkte)

Stabilitatsmatrix:
F:R2-5R%2, 0,0~ (—pw— § sin() , ) = F(w, 0)

oF oF
JF=[_’ )

ox T] (hier x; = wund x, = 6)
Jrn==pn, Jrpn= —§COS(9) s Jrpa =1, Jppn=0

Eigenwerte:
det(Jp—4)=0

Fiir Fixpunkte mit Eigenwerten von Jp A,:
(1 >0)

6, = (0,0)7 :

« Pendel hingt nach unten

e Re(4,) <0, Re(4_) <O0:

— kleine Auslenkung — klingt mit Reibung ab
= asymptotisch stabiler Fixpunkt

0, =0,n7 :

« Pendel hingt senkrecht nach oben

e Re(A,) <0, Re(A_)>0:

— Sattelpunkt

— kleine Auslenkung — bricht zusammen
= Fixpunkt instabil

(script p. 269 ff.)

10.2.3 Folge:
x() =Y, x@®) , x(ty) =xg

t
X1 () = xo + / Y(s,x,(s)) ds
To

n—oo

t
x(®) = xq +/ Y (s,x(s))ds ( lim )
fo

Beispiel:
X=X . tO =0

t
X401 = Xq +/ Y (s, x,(s)) ds
0

t
=x0+/ xo ds
0

! !
1
x2:x0+/0 xl(s)ds=x0+A(x0+x0s)ds:x0+x0t+§x0t2

X

—

.= x=xpe
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10 Differentialgleichungen:

Sparky

10.2.4 Wronskian:

x((l)) x({) x?ﬁl
W (Xg, oo X,y () = det| 70 x X
8@1) LD e
Xo o 0 X
W, (Xgs +ves Xy )(8) = det xg) 0
f@

10.2.5 Losung lin. DGL:

— c hom ! _ n+vVVv(S)
y(z)—;yvo)[cv + / (D™ s

Beispiel:
x(t)=at* + bt +c¢

Linear Unabhingig: W+#0

(Spalte v)

Hierbei wird die Basis gebildet: xo(f) =1, x;(f) =1, x,(¢) = 2

)
W (t) = det 2t | = 2 # 0 (linear unabhiéngige Basis!)

2

S O =
S =~

Beispiel fiir inhomogene DGLs:
V' +p®)y + a0y = f(1)

1.) homogene Gleichung: y" + p(t)y’ + q(t)y =0
(Grad 2 — 2 Linear unabhingige Losungen):
V() = ¢1y1(1) + oy, (1)

@ y@

2) W(1) = det (y,l 0 Y0

> = y1(Y5(1) = ¥ (Oy, (1)

3)
_ 0 »®O\_ _
W, (1) = det < o y;(1)>‘ oG

@ 0
W(t):dt<y] >=f(t) )
2= Vo ro 4

W, (s)

4) y(t) = ‘El y,(0) [c"/mm + /t(’)((_l)nwm)ds

Einfaches Beispiel:

x'(t) + mx(t) = f(1)

1.) homogene Losung: x” + mx = 0 = x,(t) = ce™

hierbei: Anfangsbedingungen fiir ¢
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Sparky

2.) inhomogene Losung:
a) x,(t) — c(t)e™™  (Variation der Konstanten)

- e — me()e™™ 4+ me()e™™ = f()
=) = f()e™

b)% = f(t)e™ (Separation der Variablen)

t
N CParl‘. =/ f(s)emsds
fo

= ‘ xX(1) = x,,(1) + xp(t)‘

Mit Wronskian:

LYW =e™#0
2)W, =10

t W t
= x(t) = xl(t)(cham + / —Vds) = e_m’(chom + / f(s)e™ ds)
0w W 10
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10 Differentialgleichungen:

Sparky

10.3 Charakteristisches Polynom:

1) a,y" + ...+ a;y +agy = f(t)
2.) e* Ansatz = a, A" +...+ay =0 (homogene Losung)
3.) nach ’Nullstellen’ 16sen:
a)(A—a)A=b)(A—c)= A —(a+b+c)A> + (ab + bc + ac)A — abc
bYA +327=94+5) 1 (A-1)= A +44-5
- =
+442-94+5
— (erste Nullstelle raten und dann ’verringern’)
4.) A, m-ter Ordnung — aoeim’ + alte’lmt +...+ am_lt’""elmt « degeneracy m

nn—1)

n
W =exp [Z A1 H(ij — A;) = global degree
i=1

i<j

5.) (inhom.): x(f) = Z A;e*" - in DGL = f(r) (Var. Konst.)
i=1

10.4 DGL-n-Ordnung:

of
1.)Aij=i , A=SDS7! | X' = Ax
9y,
Y] =y 0 1 0)(y
—Beispiel: y — 6y’ —2y" =12y'"" - [y, |= 1 V3 = 01 (1) } ¥
VA 5y +om=y)) \-5; 3 )\

2.) det(A — A) = 0 = 4; (Eigenwerte)

3.) [(A - A)|0] — o; (Eigenvektoren)

4)8 = (D) 0y 03...) , D=diag(Ay, Ay, 43...)

5) [ S |diag(1,1,1..)] - [diag(1,1,1..)| S™']  (oder z.B. Cramer’sche Regel)
6)u=S"'x, v =Du — ul(t) = e

7.) Anfangsbedingungen + x(t) 16sen

10.5 Grundlegende Losungsschritte:
10.5.1 Separation der Variablen:

dx hom 1
& a(t)x(t) = f(O)— [ Ldx = [ a()dr

10.5.2 Variation der Konstanten:
t var.
x(t) =c¢ exp(/to a(s)ds)—> ¢(t)

L cwexp(f; als)ds) = )

10.5.3 Separationsansatz:

y(x, ) = y(x)(®)
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10 Differentialgleichungen: Sparky

10.6 Sturm Liouville:

3 Losung:

%(P(t)fc(t)) +9(O)x(t) = —Aw()x(1)

wenn:
p(0), p'(1), q(t), w(t) € R und stetig auf [a, b] und p(t), w(t) > 0 auf [a, b]

regulér:

und dazu: ] ayx(@) + ax' @ =0 , fix(b)+fox'(h) =0 \
Smita, FER A o]+ |ay] >0 A B+ 1] >0

dann:

eleER , 1) <Ay <..— oo (wie Pot.topf)
e Vn 3! x,(t), wobei x,(¢) das Problem loest

* x,, hat n-1 Nullstellen in (a,b) und Basis in L?

b
< (flg) =/ o(t) f(1)g () dt

b
N / w()(Lx)y = BC + (x|L3)

— | Lx=Ax = _1 [(px/)’ + qx]
w
1 .. d d?
— L= ) [P(I)E +P(f)ﬁ + Q(t)]

10.7 Bedingungen:
10.7.1 Anfangsbedingungen:
X"+ 2x=0 ,x(0)=0, x'0)=0
10.7.2 Randbedingungen:
x"+Ax=0
1)x(0)=0, x(L)=0

2

= x, = Asin (%t)

2)x(0)=0, xX'(L)=0
1 2
> A, = (Z(nn’ + %))

(n+3)

= x, = Asin ( wt)
3.) periodisch: x(0) = x(L) , x'(0) = x'(L)
= 4, = (Zn)”

> X, ~ sin(zfﬂn 1), cos(zfﬂn 1)
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10.8 Potenzreihen:

[So]

1) f(x)= Z a,x" | — in DGL einsetzen
n=0

2.) x" lin. unabhingig (...a,) = 0 — Rekursionsformel

3.) fuer a,, loesen — Randbedingungen

>A=x)f"=2xf'+1f =0

=>(1-x%) Z n(n — l)a,,x"_2 - 2x 2 nanx"_1 +4 Z a,x"=0
n=0 n=0 n=0

n=0

=> Z(n +2)(n+ Da, ,x" — 2 n(n — a,x" -2 Z na,x" + A 2 a,x"=0
n=0 n=0 n=0

nn+1)— 2

= = G )

= f(x) = yo(x) + y1(x) . yo(x) = ag(1+ Z ayx™*) . y(x)=a(x+ Z Ay xH)

k>1
< bricht fiir alle 4, = n(n + 1) ab

v | Trenei+th-il|
> |20 =2 | H(2]+2)(21+1)]x

=l @2j+32j+2)

0 k—1 . .
j=0

10.9 Partial differential equation (PDE):

Separationsansatz:

y(x, 1) = y(x)z(t)

o’y 0% d*y
X2 Sk
or? 0x2 dx? 20
dz‘[ 2
=> — = Ac7t(t
T ®
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11 Quantenmechanik:

Sparky

11 Quantenmechanik:

m=1,A=1,c=1

11.1 Grundlagen:
11.1.1 Projektion:
P =Yg ><aql

11.1.2 Erwartungswert:
(wlAlw) = [ w(x)Ap(x)dx

11.1.3 Wahrscheinlichkeit:

| (aly) |?

11.1.4 Spektrum:

Eigenwerte = Eigenniveaus, Resolvente

11.1.5 Entartung:

2.2

_nz 2 52
E, = p 0 ! entartet, S — I(l + 1)

11.1.6 Definitionen:

lw(t) > = e "Hyy >
N (CitHY!
et =y !

n

n>0

i%W@>=me>

11.1.7 Normierung:
Iy I*= /5 lv@Pdx =1

11.1.8 Bahndrehimpulsoperator:

0
L,=—-i—
z laq)

L

=L +il,=e""(+ 9, icf)s(e)i)
Y 00 sin(0) de
1 92

sin%(9) 0¢?

+

19, . 9
12 = 2 Z
5in(0) 90 (sin@®)55) +

11.2  Verschiedene Beispiele:

11.2.1 Harmonischer Oszillator:

1d*  o* ,
____+_
2 dx2 2
H—»(n+l)

E, = ho(n+ %)
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Sparky

11.2.2 Partikel 1D Box:

2 A _.d
XL p= Vax

|8,

2
-7
H=5+

11.2.3 Potentialtopf:

0 xp€l0,L]

= V)= {oo xo &[0, L]

w(x) = Asin(kx) + Bcos(kx) (Ansatz)

w(0)=0=w(L) ,/Wm%x=1

=>y(x) = \/gsin(nf’r x)

11.2.4 Potential:

d2
H=-2L v
= (x)

ly() > =) c,e” Bl |g, >

11.2.5 Potentialstufe(?), aber mit Crack:

=>V(x)={0 xza

oo x<a

iy Hy = Ey

i) H = —%A +V ()
2

_ 11 2 Ly

- FEy = _Eﬁa’(r o)+ F
2
2= 2 (e dy- L
sin(6) 00 207 in%(9) 0p?

iii) w(r, @,0) = Y(@,0)R(r) — Trennung der Variablen — A
iv) L’Y =AY Y = Y "(9,0), A, =11 + 1)

v) < in R Teil einsetzen = Sturm Liouville Problem

S p(r) =%, q(r) = =11 + 1), o(r) = r*

< R0)=Ry <o, R(0)=Rj <o, Ra=0, R(a) =R, <

?
vi) E>0= (R|IDR) >0, DR=2ER|-R

a
(R|DR) = / r»RDR dr — Part. int > 0
0

(Weiteres sieche HoMa Skript - Altklausuren)
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