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cos3(𝑥) − cos(𝑥)

∫ sin2(𝑥)𝑑𝑥 = 1
2
(𝑥 − sin(𝑥) cos(𝑥))

∫ cos2(𝑥)𝑑𝑥 = 1
2
(𝑥 + sin(𝑥) cos(𝑥))

∫
1

√

1 − 𝑥2
𝑑𝑥 = arcsin(𝑥)

∫
1

1 + 𝑥2
𝑑𝑥 = arctan(𝑥)

∫
𝑥2

1 + 𝑥2
𝑑𝑥 = 𝑥 − arctan(𝑥)

1.2.1 Trick:

∫

∞

−∞

cos(𝑥)
1 + 𝑥2

𝑑𝑥 = ∫

∞

−∞

𝑒𝑖𝑥

1 + 𝑥2
𝑑𝑥 , da ∫

∞

−∞

𝑖 sin(𝑥)
1 + 𝑥2

𝑑𝑥 = 0

Es bietet sich also an, die Antisymmetrie von Funktionen (𝑓 (−𝑥) = −𝑓 (𝑥)) beim Integrieren auszunutzen.
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1.3 Zylinder- und Kugelkoordinaten:
1.3.1 Zylinderkoordinaten:

𝑥̄ =
⎛

⎜

⎜

⎝

𝑟 cos(𝜙)
𝑟 sin(𝜙)
𝑧

⎞

⎟

⎟

⎠

𝑒𝑟 =
⎛

⎜

⎜

⎝

cos(𝜙)
sin(𝜙)
0

⎞

⎟

⎟

⎠

𝑒𝜙 =
⎛

⎜

⎜

⎝

− sin(𝜙)
cos(𝜙)

0

⎞

⎟

⎟

⎠

𝑒𝑧 =
⎛

⎜

⎜

⎝

0
0
1

⎞

⎟

⎟

⎠

dV = r dr d𝜙 dz

∇ = 𝑒𝑟𝜕𝑟 +
1
𝑟
𝑒𝜙𝜕𝜙 + 𝑒𝑧𝜕𝑧

Δ𝑓 = 1
𝑟
𝜕
𝜕𝑟

(𝑟
𝜕𝑓
𝜕𝑟

) + 1
𝑟2
𝜕2𝑓
𝜕𝜙2

+
𝜕2𝑓
𝜕𝑧2

1.3.2 Kugelkoordinaten:

𝑥̄ =
⎛

⎜

⎜

⎝

𝑟 sin(𝜃) cos(𝜙)
𝑟 sin(𝜃) sin(𝜙)
𝑟 cos(𝜃)

⎞

⎟

⎟

⎠

= 𝑟𝑒𝑟

𝑒𝑟 =
⎛

⎜

⎜

⎝

sin(𝜃) cos(𝜙)
sin(𝜃) sin(𝜙)

cos(𝜃)

⎞

⎟

⎟

⎠

𝑒𝜃 =
⎛

⎜

⎜

⎝

cos(𝜃) cos(𝜙)
cos(𝜃) sin(𝜙)
− sin(𝜃)

⎞

⎟

⎟

⎠

𝑒𝜙 =
⎛

⎜

⎜

⎝

− sin(𝜙)
cos(𝜙)

0

⎞

⎟

⎟

⎠

dV = r sin(𝜃) dr d𝜙 d𝜃

∇ = 𝑒𝑟𝜕𝑟 +
1
𝑟
𝑒𝜃𝜕𝜃 +

1
𝑟 sin(𝜃)

𝑒𝜙𝜕𝜙

Δ𝑓 = 1
𝑟2
𝜕
𝜕𝑟

(𝑟2
𝜕𝑓
𝜕𝑟

) + 1
𝑟2 sin(𝜃)

𝜕
𝜕𝜃

(sin(𝜃)
𝜕𝑓
𝜕𝜃

) + 1
𝑟2 sin2(𝜃)

𝜕2𝑓
𝜕𝜙2

Ansatz für Herleitung:

𝜕𝑥̄
𝜕𝑟

=
⎛

⎜

⎜

⎝

sin(𝜃) cos(𝜙)
sin(𝜃) sin(𝜙)

cos(𝜃)

⎞

⎟

⎟

⎠

∣ 𝜕𝑥̄
𝜕𝑟

∣= 1 ⇒ 𝑒𝑟 = (𝜕𝑥̄
𝜕𝑟

)∕(∣ 𝜕𝑥̄
𝜕𝑟

∣)

𝜕𝑥̄
𝜕𝜃

= 𝑟
⎛

⎜

⎜

⎝

cos(𝜃) cos(𝜙)
cos(𝜃) sin(𝜙)
− sin(𝜃)

⎞

⎟

⎟

⎠

∣ 𝜕𝑥̄
𝜕𝑟

∣= 𝑟 ⇒ 𝑒𝜃 = (𝜕𝑥̄
𝜕𝜃

)∕(∣ 𝜕𝑥̄
𝜕𝜃

∣)

...

𝑒𝜁𝑖∇̄ = 1
∣ 𝜕𝑥̄∕𝜕𝜁 𝑖 ∣

𝜕
𝜕𝜁 𝑖
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1.4 Sinus-Identitäten

sin(𝑥) = 1
2𝑖
(𝑒𝑖𝑥 − 𝑒−𝑖𝑥) = 1

𝑖
sinh(𝑖𝑥)

sin(𝑥) ≈ 𝑥

cos(𝑥) = 1
2
(𝑒𝑖𝑥 + 𝑒−𝑖𝑥) = cosh(𝑖𝑥)

cos(𝑥) ≈ 1 − 𝑥2

2
sin(𝛼 ± 𝛽) = sin 𝛼 cos 𝛽 ± cos 𝛼 sin 𝛽
cos(𝛼 ± 𝛽) = cos 𝛼 cos 𝛽 ∓ sin 𝛼 sin 𝛽

sin(2𝛼) = 2 sin 𝛼 cos 𝛼

cos(2𝛼) = cos2(𝛼) − sin2(𝛼) = 2 cos2(𝛼) − 1 = 1 − 2 sin2(𝛼)

cos(𝛼) + cos(𝛽) = 2 cos[1
2
(𝛼 + 𝛽)] cos[1

2
(𝛼 − 𝛽)]

𝐴0 cos(𝜔0𝑡 − 𝛿0) = 𝐶1 sin(𝜔0𝑡) + 𝐶2 cos(𝜔0𝑡)

1.5 Poisson-Klammer und Kommutator:
1.5.1 Poisson-Klammer:

{𝐴,𝐵} = 𝜕𝐴
𝜕𝑥

𝜕𝐵
𝜕𝑝 − 𝜕𝐵

𝜕𝑥
𝜕𝐴
𝜕𝑝

1.5.2 Kommutator:

[𝐴,𝐵] = 𝐴𝐵 − 𝐵𝐴
[𝑥̂, 𝑝̂] = 𝑖ℏ
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2 Komplexe Analysis:

2.1 Komplexe Differenzierbarkeit und Holomorphie:

∙ 𝑓 ∶ Ω → ℂ komplex diffbar ⟺∃𝜔 ∈ ℂ ∶ 𝑓 (𝑧𝑜 + 𝛿) − 𝑓 (𝑧0) = 𝑤𝛿 + 𝑜(∣ 𝛿 ∣)

(mit 𝛿 ∈ ℂ, 𝛿 → 0 und 𝑎(𝛿) = 𝑜(𝑏(𝛿)) ⇔ lim
𝛿→0

𝑎(𝛿)
𝑏(𝛿)

= 0)

⇒𝑓 ′(𝑧) = lim
𝛿→0

𝑓 (𝑧 + 𝛿) − 𝑓 (𝑧)
𝛿

∙ 𝑓 ∶ Ω → ℂ holomorph ⟺ 𝑓 auf Ω komplex diffbar ∧ 𝑧↦ 𝑓 ′(𝑧) stetig auf Ω

⟺ 𝑓 analytisch: 𝑓 (𝑧) =
∞
∑

𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛 (innerhalb des Konvergenzradius konvergieren)

Für die meisten Funktionen ist es relativ einfach zu erkennen, ob bzw. auf welchem Gebiet sie holomorph sind. Dafür
müssen Polstellen/Singularitäten gesucht werden.
Beispiele:

a) 𝑓 (𝑧) =
𝑧2−𝑧20
𝑧−𝑧0

besitzt eine hebbare Singularität bei 𝑧 = 𝑧0
b) 𝑓 (𝑧) = 1

(𝑧−𝑧0)𝑛
besitzt ein Pol n-ter Ordnung bei 𝑧 = 𝑧0

c)𝑓 (𝑧) = 𝑒
1

𝑧−𝑧𝑜 besitzt eine wesentliche Singularität bei 𝑧 = 𝑧0

2.2 Cauchy-Riemann
Sei 𝑓 (𝑧) = 𝑈 (𝑥, 𝑦) + 𝑖𝑉 (𝑥, 𝑦) mit 𝑧 = 𝑥 + 𝑖𝑦, dann lassen sich unter der Annahme, dass das Limit von f(x,z) unabhängig
davon ist, von welcher "Richtung"(im Sinne der komplexen Ebene) man sich annähert, die Cauchy-Riemann-Gleichungen
aufstellen:
Reele Achse: Imaginäre Achse:

lim
ℝ∋ℎ→0

𝑓 (𝑧0 + ℎ) − 𝑓 (𝑧0)
ℎ

=
𝜕𝑓
𝜕𝑥

|

|

|

|𝑧0
= lim

ℝ∋ℎ→0

𝑓 (𝑧0 + 𝑖ℎ) − 𝑓 (𝑧0)
𝑖ℎ

= 1
𝑖
𝜕𝑓
𝜕𝑦

|

|

|

|𝑧0
⟹ 𝑖

𝜕𝑓
𝜕𝑥

|

|

|

|𝑧0
=
𝜕𝑓
𝜕𝑦

|

|

|

|𝑧0

Und damit die Cauchy-Riemann-Gleichungen:

𝜕𝑥𝑈 (𝑥, 𝑦) = 𝜕𝑦𝑉 (𝑥, 𝑦) ∧ 𝜕𝑥𝑉 (𝑥, 𝑦) = −𝜕𝑦𝑈 (𝑥, 𝑦)

Weiter gilt:
∙ Cauchy-Riemann-Eq. ⟺ 𝜕𝑧̄𝑓 = 1

2 (𝜕𝑥 + 𝑖𝜕𝑦)𝑓 = 0
∙ Funktionen, welche die C-R-Eq an einem Punkt 𝑧0 nicht erfüllen, sind (an diesem Punkt) nicht komplex differenzierbar
und somit auf keinem Gebiet Ω ∋ 𝑧0 holomorph.
∙ Gelten die C-R-Eq in einer offenen Umgebung, so ist 𝑓 dort holomorph (bzw. wenn 𝑓 komplex diffbar ist und die C-R-Eq
mit stetigen partiellen Ableitungen erfüllt).

2.3 Analytische Funktionen:
Es wurde bereits kurz erwähnt, dass Analytizität und Holomorphie äquivalent sind: Lässt sich eine Funktion um einen
Punkt 𝑧0 ’tayloren’, so besitzt die Funktion (im Allgemeinen) in dessen Umgebung keine Pole.

Die Funktion lässt sich dann wie folgt schreiben:

𝑓 (𝑧) =
∞
∑

𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛 , 𝑎𝑛 =

1
𝑘!
𝑓 (𝑘)(𝑧0)

7 HöMa3 - WiSe 2025/26



2 Komplexe Analysis: Sparky

2.3.1 Analytische Fortsetzung:

Am Einfachsten lässt sich das Vorgehen für die analytische Fortsetzung (sogesehen eine Taylorentwicklung für den Teil
der Funktion, der an dem ausgewählten Punkt holomorph ist) an zwei Beispielen erklären. Hierbei kann die Definition der
geometrischen Reihe

∑

𝑛≥0 𝑥
𝑛 = 1

1−𝑥 (welche für ∣ 𝑥 ∣< 1 konvergiert) hilfreich sein.

Um 𝒛𝟎 ∶
1

1 − 𝑧
= 1

(1 − 𝑧0) + (𝑧0 − 𝑧)

= 1
(1 − 𝑧0)

1
1 − ( 𝑧−𝑧01−𝑧0

)

= 1
(1 − 𝑧0)

∑

𝑘≥0

(𝑧 − 𝑧0)𝑘

(1 − 𝑧0)𝑘

Um 𝒛𝟎 = 𝟎 ∶ 1
𝑧
+ 1

2 − 𝑧
= 1
𝑧
+ 1

2
1

1 − 𝑧
2

= 1
𝑧
+ 1

2
∑

𝑘≥0
(𝑧
2
)𝑘

2.3.2 Laurent-Reihe:

Um eine Funktion vollständig zu zerlegen reicht es oft nicht aus, nur ihren analytischen (’gut taylorbaren’) Teil zu behan-
deln.
Die Laurent-Reihe ist im Allgemeinen wie folgt definier

∞
∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑧0)𝑛

Hierbei wird der Teil mit 𝑛 < 0 als Hauptteil (welcher für 𝑧 = 𝑧0 divergiert) und der Teil mit 𝑛 ≥ 0 als Nebenteil (welcher
für 𝑧 ∈ 𝐵𝑟0 (𝑧0) konvergiert) bezeichnet.
Im weiteren Verlauf der Vorlesung wird sich herausstellen, dass der Wert 𝑐−1 für die komplexe Analysis von grosser Be-
deutung ist.

Den Hauptteil bestimmt man beispielsweise über eine Partialbruchzerlegung oder Übertragung bekannter Strukturen.
Partialbruchzerlegung:

𝑓 (𝑥) = 𝑥2

𝑥2 + 2𝑥 + 1

= 𝑥2 + 2𝑥 + 1
(𝑥 + 1)2

− 2𝑥 + 1
(𝑥 + 1)2

= 1 − 2𝑥 + 1
(𝑥 + 1)2

Ansatz:

2𝑥 + 1
(𝑥 + 1)2

= 𝐴
(𝑥 + 1)

+ 𝐵
(𝑥 + 1)2

∣ ⋅(𝑥 + 1)2

2𝑥 + 1 = 𝐴(𝑥 + 1) + 𝐵
1) 2𝑥 = 𝐴𝑥
2) 1 = 𝐴 + 𝐵

⟹ 𝑓 (𝑥) = 1 − 2
(𝑥 + 1)

+ 1
(𝑥 + 1)2

Übertragung:

𝑒
1
𝑧 =

∑

𝑛≥0

1
𝑛!

1
𝑧𝑛
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2.4 Kurvenintegrale:
Für ein Integral entlang einer geschlossenen Kurve, muss eine Funktion gefunden werden, welche den gewünschten Weg
definiert.
Für eine stetige Funktion 𝑓 (𝑧) muss also eine stetig diffbare (und ggf. simple und geschlossene (𝛾(𝑎) = 𝛾(𝑏))) Funktion
’𝑧→ 𝛾(𝑡)’ gefunden werden, welche den Integrationsweg definiert.
Mit 𝛾 ∶ [𝑎, 𝑏] → ℂ gilt:

∫𝛾
𝑓 (𝑧)𝑑𝑧 = ∫

𝑏

𝑎
𝑓 (𝛾(𝑡))𝛾̇(𝑡)𝑑𝑡

Das Integral kann hierbei auch in mehrere Teile mit verschiedenen Funktionen 𝛾 aufgeteilt werden:
Wenn man beispielsweise auf geradem Weg von z=-1 zu z=i, dann von z=i zu z=1 und zuletzt von z=1 zu z=-1 geht, ist
es sinnvoll, das integral in 3 Teile aufzuteilen. Der erste Teil kann hierbei durch 𝛾1(𝑡) = (𝑡− 1) + 𝑖𝑡 mit 𝑡 ∈ [0, 1] definiert
werden. Hierbei spielt die Umdrehungsrichtung (und damit Vorzeichen) eine grosse Rolle.

Bei manchen Wegen bzw. Funktionen lässt sich einiges an Zeit sparen, falls man die Polstellen kennt, die sich INNER-
HALB des Integrationspfads befinden. In diesem Fall kann der Residuensatz für alle eingeschlossenen Pole verwendet
werden.

Spezialfall: Kreiskurve

Für eine Kurve 𝐶𝑅(𝑧0) bietet sich folgende Substitution an: 𝛾(𝑡) = 𝑧0 + 𝑅𝑒𝑖𝑡 , 𝛾 ∶ [0, 2𝜋] → ℂ

2.5 Cauchy:
2.5.1 Cauchys Theorem:

(= keine Polstellen innerhalb der Kurve)
∙ 𝑓 ∶ Ω → ℂ holomorph auf 𝐴̄ ⊂ Ω, A offen (und 𝐴̄ kompakt), 𝜕𝐴 geschlossen

∫𝜕𝐴
𝑓 (𝑧)𝑑𝑧 = 0

Anders formuliert:
∙ 𝑓 holomorph, einfach zusammenhängendes Gebiet (bildlich erklärt: jeder geschlossene Weg in Menge kann auf ein
Punkt zusammengezogen werden/ es gibt keine (nicht beinhalteten) ’ Inseln’ in der Menge), 𝛾 geschlossen

⟹ ∫𝛾
𝑓 (𝑧)𝑑𝑧 = 0

Wichtiges Beispiel:

∫𝐶𝑅(0)
𝑧𝑛𝑑𝑧 = 2𝜋𝑖𝛿𝑛,−1

2.5.2 Cauchys Integralformel:

∙ mit den gleichen Bedingungen wie für Cauchys Theorem gilt ∀𝑧0 ∈ 𝐴:

⟹ 𝑎0(𝑧0) = 𝑓 (𝑧0) =
1
2𝜋𝑖 ∫𝜕𝐴

𝑓 (𝑤)
(𝑤 − 𝑧0)

𝑑𝑤

(Hierbei kann 𝜕𝐴 beispielsweise der Rand eines Kreises (also 𝐶𝑅(𝑧0)) sein)
Hieraus folgt auch:

⟹ 𝑎𝑛(𝑧0) =
𝑓 (𝑛)

𝑛!
(𝑧0) =

1
2𝜋𝑖 ∫𝜕𝐴

𝑓 (𝑤)
(𝑤 − 𝑧0)𝑛+1

𝑑𝑤

2.5.3 Mittelwertseigenschaft:

Mit 𝑧 → 𝑧0 + 𝑟𝑒𝑖𝜃 folgt direkt: 𝑓 (𝑧0) =
1
2𝜋 ∫

2𝜋
0 𝑓 (𝑧0 + 𝑟𝑒𝑖𝜃)𝑑𝜃
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2.6 Residuen:
(nicht holomorph, Pol in Kurve)
Sei 𝑓 ∶ 𝑈 → ℂ eine meromorphe Funktion in einer offenen, simlpy connected Menge 𝑈 ⊂ ℂ und 𝑧0 ∈ 𝑈 .
Dann gilt für ein Pol 𝑧0 der Ordnung n :

Res(𝑓, 𝑧0) =
1

(𝑛 − 1)!
lim
𝑧→𝑧0

𝑑𝑛−1

𝑑𝑧𝑛−1
((𝑧 − 𝑧0)𝑛𝑓 (𝑧)

Weiter gilt für die Funktion 𝑓 ∶ 𝑈 → ℂ mit den Polen 𝑧𝑘 ∈ 𝐵𝑅(𝑧0) ⊂ 𝑈 (𝜕𝐵𝑅(𝑧0) = 𝐶𝑅(𝑧0)):

∫𝐶𝑅(𝑧0)
𝑓 (𝑧)𝑑𝑧 = 2𝜋𝑖

∑

𝑘
𝐼𝑘Res(𝑓, 𝑧𝑘)

Anmerkung:
𝐼𝑘 gibt an, wie oft und in welche Richtung die Polstellen umkreist wurden. Hierbei bekommt 𝑒𝑖𝑥 ein positives Vorzeichen
(gegen den Uhrzeigersinn) und 𝑒−𝑖𝑥 ein negatives.

2.7 Meromorphie:
Definitionen für Meromorphie:
∙ 𝑆 ⊂ 𝑈 diskret, 𝑓 ∶ 𝑈 ⧵ 𝑆 → ℂ holomorph und bei jedem 𝑠 ∈ 𝑆 ein Pol ⟹ 𝑓 meromorph auf U
∙ 𝑓, 1𝑓 oder beide holomorph

Sei 𝑓 (𝑧) meromorph mit der Polstelle 𝑧0 und 𝑔(𝑧) holomorph (bei 𝑧0), dann gilt:

𝑓 (𝑧) =
𝑔(𝑧)

(𝑧 − 𝑧0)𝑚
⇒ Res(𝑓, 𝑧0) =

𝑔(𝑚−1)(𝑧0)
(𝑚 − 1)!

= 𝑎−1

2.8 Reelle Polynome:
Für Integrale über die reelle Achse muss darauf geachtet werden, dass beim Schliessen des Integrationswegs über die
komplexe Ebene der hinzugefügte Halbkreisbogen verschwindet. Darüber hinaus muss auf die Form der Funktion und auf
die Lage der Pole geachtet werden.

2.8.1 Form des Integrals:

∫ ∞
−∞

𝑃 (𝑥)
𝑄(𝑥)𝑒

𝑖𝛼𝑥𝑑𝑥 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2𝜋𝑖
𝑁
∑

𝑛=1
Res(𝑓, 𝑧𝑛+) 𝛼 > 0 schliessen übere obere Halbebene

− 2𝜋𝑖
𝑁
∑

𝑛=1
Res(𝑓, 𝑧𝑛−) 𝛼 < 0 schliessen übere untere Halbebene

2.8.2 Verschwinden des hinzugefügten Kreisbogens:

∫Γ
𝑓 (𝑧)𝑑𝑧 = ∫

𝑅

−𝑅
𝑓 (𝑥)𝑑𝑥 + ∫𝐻𝑅+

𝑓 (𝑧)𝑑𝑧

Grobe Abschätzung:

→ lim
𝑅→∞

|

|

|

|

∫𝐻𝑅+

𝑓 (𝑧)𝑑𝑧
|

|

|

|

≤ lim
𝑅→∞∫𝐻𝑅+

∣ 𝑓 (𝑧) ∣ 𝑑𝑧 → 0

mit 𝑧→ 𝛾(𝑡) = 𝑅𝑒𝑖𝑡 ∶

⟹
|

|

|

|

∫𝐻𝑅+

𝑓 (𝑧)𝑑𝑧
|

|

|

|

≤ 𝜋 lim
𝑅→∞

sup
𝑡∈[0,𝜋]

|

|

|

|

𝑅𝑓 (𝑅𝑒𝑖𝑡)
|

|

|

|

≤ 𝜋 lim
𝑅→∞

|

|

|

|

𝑅𝑓 (𝑅)
|

|

|

|

→ 0
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2 Komplexe Analysis: Sparky

Hierzu bietet es sich an ’Sample 3, Exercise 1’ im HöMa Skript anzuschauen.

2.8.3 Residuenrezept:

Folgende Schritte bieten sich an, um Integrale mit dem Residuensatz zu lösen. Das ’Rezept’ stellt jedoch noch keine ma-
thematische Begründung für dessen Anwendbarkeit dar.

0) Ausgangspunkt:

𝐼 = ∫

∞

−∞
𝑓 (𝑥)𝑑𝑥, 𝑓 (𝑧) =

𝑃 (𝑧)
𝑄(𝑧)

𝑒𝑖𝛼𝑧 , 𝛼 ∈ ℂ , deg(𝑄) > deg(𝑃 )

1) Konvergenz:

a) ∄𝑧 ∈ ℝ, s.d. 𝑄(𝑧) = 0 (also keine reellen Polstellen)
b) 𝛼 ∈ ℝ
c) deg(𝑄) ≥ deg(𝑃 ) + 2
oder:
b*) 𝛼 ≠ 0 , 𝛼 ∈ ℝ
c*) deg(𝑄) ≥ deg(𝑃 ) + 1

2) Berechnung mit Residuensatz:

a) 𝛼 = 0 ∶ Entwedere untere oder obere Halbebene schliessen (bei unterer noch ’-’ Vorfaktor)
b) 𝛼 ≠ 0 ∶ 𝛼 > 0 → ℍ+, 𝛼 < 0 → ℍ−

c) 𝐼 = ±2𝜋𝑖
∑

Pol z∈ℍ+∕−

Res(𝑓, 𝑧)

2.9 Reelle Pole:
Befindet sich ein Pol auf der Reellen Achse (/dem Integrationspfad), so muss er zunächst ein bisschen (𝜖) verschoben
werden.
Beispiel:

1
𝑤2−𝑝2 𝑒

−𝑖𝑤𝑡 =
{

𝑡 > 0 ⇒ Im𝑤 < 0
𝑡 < 0 ⇒ Im𝑤 > 0

𝐺̂𝑟𝑒𝑡 = 1
(𝑤 + 𝑖𝜖)2 − 𝑝2

, 𝑤 = −𝑖𝜖± ∣ 𝑝 ∣

𝐺̂𝑎𝑑𝑣 = 1
(𝑤 − 𝑖𝜖)2 − 𝑝2

, 𝑤 = +𝑖𝜖± ∣ 𝑝 ∣

𝐺̂𝐹𝑒𝑦𝑛 ∶ 𝑤 = ±𝑖𝜖± ∣ 𝑝 ∣

2.10 Steepest descent (+Asymptotik):
2.10.1 maximum modulus principle:

𝑓 ∶ 𝑈 → ℂ nicht konstante holomorphe Funktion in U (open, simply connected).
Dann: |f(z)| hat kein Maximum im inneren von U:
∀𝑧 ∈ 𝑈 ∧ ∀𝛿 > 0, ∃𝜔 ∈ 𝐵𝛿(𝑧) ∩ 𝑈 s.t. |𝑓 (𝜔)| > |𝑓 (𝑧)|
→ supremum (max.) kommt nur auf dem Rand 𝜕𝑈 vor

2.10.2 Einschub: Laplace’sche Methode:

𝐼(𝑥) = ∫

𝑏

𝑎
𝑒−𝑥𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡

f stetig und globales, eindeutiges Minimum bei 𝑡0 ∈ (𝑎, 𝑏) für 𝑡 ≠ 𝑡0 ∶ 𝒇 (𝒕) > 𝒇 (𝒕𝟎).
Weiter sei 𝑓 ∈ 𝐶𝑘 , 𝑘 ≥ 3, in Umgebung von 𝑡0 ,𝒇 ′′(𝒕𝟎) > 𝟎.
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2 Komplexe Analysis: Sparky

Dazu sei g beschränkt auf [a,b], 𝒈(𝒕𝟎) ≠ 𝟎: ∃𝐴 > 0 , 𝜂 > 0 s.d. |𝑔(𝑡) − 𝑔(𝑡0)| < 𝐴|𝑡 − 𝑡0|2 ∀𝑡 ∈ (𝑎, 𝑏)
Dann:

𝐼(𝑥) =

√

2𝜋
𝑥𝑓 ′′(𝑡0)

𝑒−𝑥𝑓 (𝑡0)𝑔(𝑡0) (1 + Θ(1)) (für 𝑥→ ∞)

Bemerkung:
𝑓 (𝑡) = 𝑓 (𝑡0) + 𝑓 ′(𝑡0)(𝑡 − 𝑡0) +

1
2𝑓

′′(𝑡0)(𝑡 − 𝑡0)2 +… (mit 𝑓 ′(𝑡0) = 0 (Minima))

𝑒−𝑥𝑓 (𝑡) Maxima bei 𝑓 (𝑡) Minima
→ das am stärksten gewichten
→ dann Taylorn
→ 𝑔(𝑡0) setzen
→ dann wieder auf ganzem Bereich integrieren

2.10.3 Sattelpunktmethode:

f(x,y)=u(x,y)+iv(x,y) mit v,u∈ ℝ, f holomorph

Orthogonalität: ∇𝑢∇𝑣 = 0

Kritische Punkte:

𝜕𝑧𝑓
|

|

|

|𝑧=𝑧𝑐
= 1

2
(𝜕𝑥 − 𝑖𝜕𝑦)𝑓

|

|

|

|𝑧=𝑧𝑐
= 0

𝜕𝑧̄𝑓=0 (holom.)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝜕𝑥𝑢 = 𝜕𝑦𝑢 = 𝜕𝑥𝑣 = 𝜕𝑦𝑣 = 0

→ Kritischer Punkt von f ist Sattelpunkt für Re(f)=u und Im(f)=v

Hessian:

𝐻𝑢 =
(

𝜕2𝑥𝑢 𝜕𝑥𝜕𝑦𝑢
𝜕𝑦𝜕𝑥𝑢 𝜕2𝑦𝑢

)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝐶𝑅−𝑒𝑞.

(

𝜕2𝑥𝑢 −𝜕2𝑥𝑣
−𝜕2𝑥𝑣 −𝜕2𝑥𝑢

)

𝐻𝑣 =
(

𝜕2𝑥𝑣 𝜕𝑥𝜕𝑦𝑣
𝜕𝑦𝜕𝑥𝑣 𝜕2𝑦𝑣

)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝐶𝑅−𝑒𝑞.

(

𝜕2𝑥𝑣 𝜕2𝑥𝑢
𝜕2𝑥𝑢 −𝜕2𝑥𝑣

)

...(script p. 191 ff.)

Integral:
𝐼(𝑧) = ∫𝐶 𝑑𝑧 𝑒

𝑓 (𝑧), f(z)=u+iv holom. (da wo holomorph alle Integrale über Wege gleichwertig) ⇒ ∇𝑢∇𝑣 = 0
⇒ Kurven v(z)=const. (→ stationäre Phase = steilster Weg) sind Gradientenlinien von u(z)
↪ neuer Weg: 𝐶 → 𝐶𝑠𝑑 , wo v(t)=const.=v0

𝐼(𝑥) = 𝑒𝑖𝑣0 ∫𝐶𝑠𝑑
𝑑𝑧 𝑒𝑢(𝑧)

⇒ Laplace-Methode verwenden (Taylor um 𝑥𝑐 + Gauss-Integral)

∫ 𝑑𝑥 𝑒−ℎ(𝑥) = 𝑒−ℎ(𝑥𝑐 ) ∫ 𝑑𝑦 𝑒−
1
2ℎ

′′(𝑥𝑐 )𝑦2−Θ(𝑦3) ≈ 𝑒−ℎ(𝑥𝑐 )
√

2𝜋
ℎ′′(𝑥𝑐)

(1 + ...)
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3 Hilberträume: Sparky

3 Hilberträume:

3.1 Definition:
normierter Raum (X,∥ ⋅ ∥), mit X in Normtopologie vollständig (jede Cauchy-Folge konvergiert in der von der Norm
induzierten Metrik) und einer zusätzlichen Struktur: Skalarprodukt (induziert Norm)

3.1.1 Vollständigkeit:

Für eine Folge (𝑥𝑛)𝑛∈ℕ von Elementen eines metrischen Raums (M,d), (wobei oft 𝑑(𝑥𝑛, 𝑥𝑚) =∥ 𝑥𝑛 − 𝑥𝑚 ∥), gilt:
Cauchy-Folge: ∀𝜖 > 0 ∃𝑁 ∈ ℕ ∀𝑛, 𝑚 ≥ 𝑁 ∶ 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖

Konvergiert: ∀𝜖 > 0 ∃𝑁 ∈ ℕ ∀𝑛 ≥ 𝑁 ∶ 𝑑(𝑥𝑛, 𝑥) < 𝜖, wobei 𝑥 ∈𝑀 .

Vollständigkeit:
Jede Cauchy-Folge konvergiert.
Hierbei ist es wichtig zu kontrollieren, dass der Grenzwert der Folge auch wirklich in der Menge selbst liegt.

Außerdem gilt: Konvergent ⇒ Cauchy-Folge

3.1.2 Bedeutung:

Verknüpfungen:
∙ oft + und ⋅

Für +:
∙ Neutrales Element (0)
∙ Inverses Element (-v)

Für ⋅:
∙ Neutrales Element (1)
∙ Verknüpfung mit 0 (entweder 0 aus VR oder 0 aus Körper) führt zu 0 (aus Vektorraum bzw. Hilbertraum)

Norm ∥ ⋅ ∥:
∙ ∥ 𝑣 ∥≥ 0
∙ ∥ 𝑣 ∥= 0 ⇒ 𝑣 = 0
∙ ∥ 𝜆𝑣 ∥=∣ 𝜆 ∣∥ 𝑣 ∥
∙ ∥ 𝑣 +𝑤 ∥≤∥ 𝑣 ∥ + ∥ 𝑤 ∥ (Dreiecksungleichung)

3.2 Skalarprodukt/inneres Produkt:

⇒ ⟨𝑧|𝑤⟩ =
∑𝐷
𝜇=1 𝑧̄

𝜇𝑤𝜇
Teilweise wird die komplexe Konjugation auch auf das zweite Argument definiert.
Darüber hinaus ist nicht jedes innere Produkt/Skalarprodukt über eine Summe der Komponenten definiert. Im Verlauf der
Vorlesung wird noch die Definition über ein Integral aufkommen. Wichtig ist es auch, im Kopf zu behalten, dass Normen
im Allgemeinen nicht nur in Form einer Summe oder eines Integrals auftreten können.

∙ | ⟨𝑥|𝑦⟩ | < ∞ (wohldefiniert)
∙ ⟨𝑥|𝑥⟩ ≥ 0 (positiv)
∙ ⟨𝑥|𝑥⟩ = 0 ⇒ 𝑥 = 0 (non-degenerate)
∙ ⟨𝑥|𝑦⟩ = ⟨𝑦|𝑥⟩ (hermitesch)
∙ ⟨𝑥|𝛼𝑢 + 𝛽𝑣⟩ = 𝛼 ⟨𝑥|𝑢⟩ + 𝛽 ⟨𝑥|𝑣⟩
⟨𝛼𝑥 + 𝛽𝑦|𝑢⟩ = 𝛼̄ ⟨𝑥|𝑢⟩ + 𝛽 ⟨𝑦|𝑢⟩ (Sesquilinearität)
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3 Hilberträume: Sparky

3.3 l/L-space:
l-space: L-space:
𝑡𝑛 ⟶ 𝑓 (𝑥)
∑

⟶ ∫
𝑙𝑝 = {(𝑡𝑛)𝑛∈ℕ ∶ 𝑡𝑛 ∈ 𝕂 ,

∑∞
𝑛=1 ∣ 𝑡𝑛 ∣

𝑝<∞} ⟶ 𝐿𝑝(𝑋,𝕂) = {𝑓 ∶ 𝑋 → 𝕂 ∣ 𝑓 messbar, ∫𝑋 ∣ 𝑓 (𝑥) ∣𝑝 𝑑𝑥 <∞}

∥ 𝑥 ∥𝑝= (
∑∞
𝑛=1 ∣ 𝑡𝑛 ∣

𝑝)
1
𝑝 ⟶ ∥ 𝑓 (𝑥) ∥𝑝= (∫ ∣ 𝑓 (𝑥) ∣𝑝 𝑑𝑥)

1
𝑝

𝑙∞ = {(𝑡𝑛)𝑛∈ℕ ∶ 𝑡𝑛 ∈ 𝕂 , (𝑡𝑛)𝑛∈ℕ beschränkt}, mit ∥ (𝑡𝑛)𝑛∈ℕ ∥∞= sup{|𝑡𝑛| ∶ 𝑛 ∈ ℕ}

3.4 Gram-Schmidt:
Ziel hierbei ist es, aus einer gegebenen Menge an Elementen eine orthonormale Basis zu berechnen. So kann das erste
Element (im normierten Zustand) als erstes Basiselement verwendet werden. Darauf aufbauend werden die dazu unab-
hängigen Anteile des nächsten Elements (im normierten Zustand) zum nächten Basiselement. Dies wird dann solange
weitergeführt, bis jedes gegebene Element angepasst wurde.

𝑓𝑘+1 = 𝑥𝑘+1 −
𝑘
∑

𝑙=1
⟨𝑒𝑙|𝑥𝑘+1⟩ 𝑒𝑙 ≠ 0

𝑒𝑘+1 =
𝑓𝑘+1

∥ 𝑓𝑘+1 ∥
⇒ ⟨𝑒𝑘+𝑙|𝑒𝑙⟩ = 0 ∀𝑙 ∈ {1, ...𝑘}

3.5 Ungleichungen:
3.5.1 Dreiecksungleichung:

∥ 𝑣 +𝑤 ∥ ≤ ∥ 𝑣 ∥ + ∥ 𝑤 ∥

Beweisskizze:

∥ 𝑥 + 𝑦 ∥= ⟨𝑥 + 𝑦|𝑥 + 𝑦⟩ =∥ 𝑥 ∥2 + ∥ 𝑦 ∥2 + ⟨𝑥|𝑦⟩ + ⟨𝑦|𝑥⟩

=∥ 𝑥 ∥2 + ∥ 𝑦 ∥2 +2𝑅𝑒(⟨𝑥|𝑦⟩)

mit: | ⟨𝑥|𝑦⟩ | =
√

𝑅𝑒(...)2 + 𝐼𝑚(...)2 ≥ 𝑅𝑒(⟨𝑥|𝑦⟩)
| ⟨𝑥|𝑦⟩ | =∥ 𝑥 ∥∥ 𝑦 ∥ | cos(𝜃)| ≤∥ 𝑥 ∥∥ 𝑦 ∥

folgt: ∥ 𝑥 + 𝑦 ∥ ≤∥ 𝑥 ∥2 + ∥ 𝑦 ∥2 +2 ∥ 𝑥 ∥∥ 𝑦 ∥

= (∥ 𝑥 ∥ + ∥ 𝑦 ∥)2

3.5.2 Hölder-Ungleichung:

a) 𝑥 ∈ 𝑙1 , 𝑦 ∈ 𝑙∞ ⇒ 𝑥𝑦 ∈ 𝑙1 und ∥ 𝑥𝑦 ∥1 ≤ ∥ 𝑥 ∥1 ∥ 𝑦 ∥∞
b) 1 < 𝑝 <∞ , 1

𝑝 +
1
𝑞 = 1 , 𝑥 ∈ 𝑙𝑝 , 𝑦 ∈ 𝑙𝑞 ⇒ 𝑥𝑦 ∈ 𝑙1 und ∥ 𝑥𝑦 ∥1 ≤ ∥ 𝑥 ∥𝑝 ∥ 𝑦 ∥𝑞

3.5.3 Cauchy-Schwartz-Ungleichung:

| ⟨𝑥|𝑦⟩ | ≤ ∥ 𝑥 ∥ ∥ 𝑦 ∥

3.5.4 Parallelogramm-Gleichung:

∥ 𝑥 + 𝑦 ∥2 + ∥ 𝑥 − 𝑦 ∥2 = 2 ∥ 𝑥 ∥2 +2 ∥ 𝑦 ∥2

Beweisskizze:
(⟨𝑥|𝑥⟩ + ⟨𝑦|𝑦⟩ + ⟨𝑥|𝑦⟩ + ⟨𝑦|𝑥⟩) − ⟨𝑥|𝑦⟩ − ⟨𝑦|𝑥⟩ + ⟨𝑥|𝑥⟩ + ⟨𝑦|𝑦⟩ = 2 ∥ 𝑥 ∥2 +2 ∥ 𝑦 ∥2
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4 Operatoren: Sparky

4 Operatoren:

4.1 Definitionen:
4.1.1 Linearität:

𝐿(𝑋, 𝑌 ) ∶= {𝑇 ∶ 𝑋 → 𝑌 | 𝑇 ist linear und stetig}
→ 𝐴,𝐵 ∈ 𝐿(𝑋, 𝑌 ) , 𝛼, 𝛽 ∈ 𝕂 ∶ (𝛼𝐴 + 𝐵)(𝑥) = 𝛼𝐴𝑥 + 𝐵𝑥
→ 𝐴(𝛼𝑥 + 𝛽𝑦) = 𝛼𝐴(𝑥) + 𝛽𝐴(𝑦)

4.1.2 Eigenwertgleichung:

𝐴𝑥 = 𝛼𝑥

4.1.3 Operatornorm:

∥ 𝐴 ∥𝑜𝑝= sup
𝑥∈𝑉

∥ 𝐴𝑥 ∥
∥ 𝑥 ∥

Ausserdem gilt mit 𝑇 ∈ 𝐿(𝑋, 𝑌 ) , 𝑆 ∈ 𝐿(𝑌 ,𝑍) ⇒ 𝑆𝑇 ∈ 𝐿(𝑋,𝑍):
∥ 𝑆𝑇 ∥𝑜𝑝 ≤ ∥ 𝑆 ∥𝑜𝑝∥ 𝑇 ∥𝑜𝑝

Beschränktheit:
Sei T linearer Operator. Dann gilt:
T beschränkt ⇔ T stetig
T beschränkt ⇔ mit 𝑀 ∈ ℝ ∶ ∃𝑀 > 0 ∀𝑥 ∈ 𝑋 ∶ ∥ 𝑇𝑥 ∥≤𝑀 ⋅ ∥ 𝑥 ∥

Beispiel:
Sei 𝑇 ∶ 𝑑 → 𝑑, (𝑡𝑛)𝑛∈ℕ ↦ ( 1

𝑛2 𝑡𝑛)𝑛∈ℕ mit 𝑛 ≠ 0 ein (linearer) Operator.
Dann gilt für die Operatornorm (mit Supremumsnorm):
∥ 𝑇 (𝑡𝑛)𝑛∈ℕ ∥ = ∥ ( 1

𝑛2 𝑡𝑛)𝑛∈ℕ ∥ ≤ 1⋅ ∥ (𝑡𝑛)𝑛∈ℕ ∥
∥ 𝑇 ∥𝑜𝑝= 1 =𝑀

4.1.4 Selbstadjungiert:

Sei A ein linearer, beschränkter Operator.
Im Allgemeinen gilt dann: ⟨𝐴𝑥|𝑦⟩ = ⟨𝑥|𝐴†𝑦⟩
Gilt nun weiter: 𝐴 = 𝐴† und 𝐷(𝐴) = 𝐷(𝐴†) (wobei D(A) der Definitionsbereich von A ist), so bezeichnet man den
Operator als selbstadjungiert.

Damit folgt für selbstadjungierte Operatoren: ⟨𝐴𝑥|𝑦⟩ = ⟨𝑥|𝐴𝑦⟩

4.2 Spektraltheorie:
Sei X Banachraum und 𝐴 ∈ 𝐿(𝑋) linearer Operator.

4.2.1 Spektrum:

𝜎(𝐴) = ℂ ⧵ 𝜌(𝐴) = {Eigenwerte}

4.2.2 Resolventenmenge:

𝜌(𝐴) = ℂ ⧵ {Eigenwerte}

= {𝑧 ∈ ℂ ∶ ∃(𝑧 − 𝐴)−1 ∈ 𝐿(𝑋)} ≠ ∅
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4.2.3 Resolventenabbildung:

𝑅𝐴(𝑧) = (𝑧 − 𝐴)−1

Alternativ wird sie auch mit (𝐴 − 𝑧)−1 definiert. 𝑅𝐴(𝑧) ist holomorph auf 𝜌(𝐴).
Die Inverse (in endlichen Dimensionen) lässt sich beispielsweise über LGS oder die Cramersche Regel bestimmen.

LGS:
⎡

⎢

⎢

⎣

𝑧 − 𝑎11 −𝑎12 −𝑎13 1 0 0
−𝑎21 𝑧 − 𝑎22 −𝑎23 0 1 0
−𝑎31 −𝑎32 𝑧 − 𝑎33 0 0 1

⎤

⎥

⎥

⎦

⟶

⎡

⎢

⎢

⎣

1 0 0
0 1 0 (𝑧 − 𝐴)−1
0 0 1

⎤

⎥

⎥

⎦

Cramersche Regel:

(𝑧 − 𝐴)−1 =
(−1)𝑖+𝑗(𝑧 − 𝐴)∗𝑗𝑖

det (𝑧 − 𝐴)

Hierbei stellt (𝑧 − 𝐴)∗𝑗𝑖 die Unterdeterminante von (z-A) dar, bei der die j-Zeile und i-Spalte gestrichen wurde.

4.2.4 Wichtige Formeln:

Folgendes wird zum Teil Zusatz zum besseren Verständnis des Nutzens des Spektralsatzes sein.
Mit: 𝑋 𝐵𝑅, dim(𝑋) <∞ , 𝐴,𝐵 ∈ 𝐿(𝑋), ∀𝑧 ∈ 𝜌(𝐴) ∩ 𝜌(𝐵)

Erste Resolventengleichung: 𝑅𝐴(𝑧′) − 𝑅𝐴(𝑧) = (𝑧 − 𝑧′)𝑅𝐴(𝑧)𝑅𝐴(𝑧′)

Zweite Resolventengleichung: 𝑅𝐵(𝑧) − 𝑅𝐴(𝑧) = 𝑅𝐴(𝑧)(𝐵 − 𝐴)𝑅𝐵(𝑧)

Lemma:

1 = 1
2𝜋𝑖 ∫

|𝑧|=𝑟
𝑅𝐴(𝑧)𝑑𝑧

𝐴 = 1
2𝜋𝑖 ∫

|𝑧|=𝑟
𝑧𝑅𝐴(𝑧)𝑑𝑧

𝑃 (𝐴) = 1
2𝜋𝑖 ∫

|𝑧|=𝑟
𝑃 (𝑧)𝑅𝐴(𝑧)𝑑𝑧 (Polynome)

Laurentreihe 𝑅𝐴(𝑧) ∶

𝑅𝐴(𝑧) =
∑

𝑛∈ℤ
𝐴𝑛(𝑧 − 𝜆)𝑛

𝑅𝐴(𝑧→ 𝜉 + 𝜆) = 𝑅𝐴(𝜆 + 𝜉) = 𝑅(𝜉) =
∑

𝑛∈ℤ
𝐴𝑛𝜉

𝑛

⇒ 𝐴𝑛 =
1
2𝜋𝑖 ∫

|𝜉|=𝑟0
𝜉−𝑛−1𝑅(𝜉)𝑑𝜉

1) 𝑷 = 𝑨−𝟏 =
𝟏
𝟐𝝅𝒊 ∫ 𝑹(𝝃)𝒅𝝃

∙ Projektor: 𝑃 2
𝑘 = 𝑃𝑘

∙ Residuum
∙
∑𝑙
𝑘=1 𝑃𝑘 = 1

∙ 𝑃𝑘𝑃𝑘′ = 𝛿𝑘𝑘′𝑃𝑘
∙ 𝐴 = 𝐴† ⇒ 𝑃𝑘 = 𝑃 †

𝑘

2) 𝑫 = 𝑨−𝟐 =
𝟏
𝟐𝝅𝒊 ∫ 𝝃𝑹(𝝃)𝒅𝝃

∙ 𝐷𝑚 = 0 (nilpotent)
∙ Pole höheren Grades (für einfache Pole 𝐷𝜆 = 0)
∙ 𝑃𝑘𝐷𝑘 = 𝐷𝑘𝑃𝑘 = 𝐷𝑘 (kommutieren)
∙ 𝐴 = 𝐴† ⇒ 𝐷𝑘 = 𝐷†

𝑘 ⇒ 𝐷𝑘 = 0

3) 𝑺 = 𝑨𝟎 =
𝟏
𝟐𝝅𝒊 ∫

𝑹(𝝃)
𝝃 𝒅𝝃
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4 Operatoren: Sparky

Laurentreihe: 𝑅𝐴(𝑧) =
𝑙

∑

𝑘=1

[

1
𝑧 − 𝜆𝑘

𝑃𝑘 +
𝑚𝑘−1
∑

𝑙=1

1
(𝑧 − 𝜆𝑘)𝑙+1

𝐷𝑙
𝑘

]

Spektralzerlegung: 𝐴 =
𝑙

∑

𝑘=1
(𝜆𝑘𝑃𝑘 +𝐷𝑘)

Für 𝐴 = 𝐴† ⇒ 𝐴 =
∑𝑙
𝑘=1 𝜆𝑘𝑃𝑘 ⇒ 𝑓 (𝐴) = 𝑓 (𝜆1)𝑃1 + ... + 𝑓 (𝜆𝑘)𝑃𝑘

Hiermit lässt sich beispielsweise 𝑒𝑖𝐴 für selbstadjungierte Matrizen einfach bestimmen.

Beispiel (Laurentreihe und Spektralzerlegung):

M=
⎛

⎜

⎜

⎝

2 + 𝑖 −1 0
1 𝑖 0
0 0 −3

⎞

⎟

⎟

⎠

= (1 + 𝑖)
⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 0

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

1 −1 0
1 −1 0
0 0 0

⎞

⎟

⎟

⎠

− 3
⎛

⎜

⎜

⎝

0 0 0
0 0 0
0 0 1

⎞

⎟

⎟

⎠

⇒ 𝑅𝑀 (𝑧) = 1
(𝑧+3)[(𝑧−(2+𝑖))(𝑧−𝑖)+1]

⎛

⎜

⎜

⎝

(𝑧 − 𝑖)(𝑧 + 3) −(𝑧 + 3) 0
(𝑧 + 3) (𝑧 + 3)(𝑧 − (2 + 𝑖)) 0

0 0 (𝑧 − (2 + 𝑖))(𝑧 − 𝑖) + 1

⎞

⎟

⎟

⎠

Pole:
(𝑧 + 3) [(𝑧 − (2 + 𝑖))(𝑧 − 𝑖) + 1] = 0
⇒ Doppelte Polstelle: 𝑧1 = (1 + 𝑖), 𝑚1 = 2
⇒ Einfache Polstelle: 𝑧2 = −3, 𝑚2 = 1

⇒ 𝑅𝑀 (𝑧) = 1
(𝑧 − (1 + 𝑖))2(𝑧 + 3)

⎛

⎜

⎜

⎝

(𝑧 − 𝑖)(𝑧 + 3) −(𝑧 + 3) 0
(𝑧 + 3) (𝑧 + 3)(𝑧 − (2 + 𝑖)) 0

0 0 (𝑧 − (1 + 𝑖))2

⎞

⎟

⎟

⎠

= 1
(𝑧 − (1 + 𝑖))2

⎛

⎜

⎜

⎝

(𝑧 − 𝑖)+1 − 1 −1 0
1 (𝑧 − (1 + 1 + 𝑖)) 0
0 0 0

⎞

⎟

⎟

⎠

+ 1
(𝑧 + 3)

⎛

⎜

⎜

⎝

0 0 0
0 0 0
0 0 1

⎞

⎟

⎟

⎠

= 1
(𝑧 − (1 + 𝑖))

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 0

⎞

⎟

⎟

⎠

+ 1
(𝑧 − (1 + 𝑖))2

⎛

⎜

⎜

⎝

1 −1 0
1 −1 0
0 0 0

⎞

⎟

⎟

⎠

+ 1
(𝑧 + 3)

⎛

⎜

⎜

⎝

0 0 0
0 0 0
0 0 1

⎞

⎟

⎟

⎠

Alternativ lässt sich die Zerteilung (falls nicht offensichtlich) auch über die verschiedenen Integrale der Matrix(elemente)
und anschliessendem Einsetzen in die Formel der Laurentreihe bestimmen.

4.2.5 Spektralsatz dim(X)=∞:

Spektren:
a) Punktspektrum:
∃𝑥 ∈ 𝑋 ⧵ {0}, 𝜆 ∈ ℂ (𝜆 ∈ ℝ für 𝐴 = 𝐴†) ∶ 𝐴𝑥 = 𝜆𝑥
⇒ (𝜆 − 𝐴)𝑥 = 0 ∧ 𝑥 ≠ 0 (nichttriviale Lösung)
⇒ 𝜆 − 𝐴 nicht injektiv, ∄(𝜆 − 𝐴)−1

b) stetiges Spektrum:
⇒ 𝜆 − 𝐴 injektiv , nicht surjektiv und ran(𝜆 − 𝐴) (Bildraum {(𝜆 − 𝐴)𝑥 ∶ 𝑥 ∈ 𝑋}) dicht in X
⇒ z.B. (𝑥̂𝑓 )(𝑥) = 𝑥𝑓 (𝑥)

c) Restspektrum:
⇒ 𝜆 − 𝐴 injektiv, ran(𝜆 − 𝐴) ≠ 𝑋
⇒ leer für 𝐴 = 𝐴†

Spektralsatz:
H Hilbertraum, 𝐴 ∈ 𝐿(𝐻), 𝐴 = 𝐴†

Dann existiert eine Familie orthogonaler Projektoren (Σ𝐴(𝑡))𝑡∈ℝ (’Spektralschar von A’), sodass:
a) Σ𝐴(𝑡) = 0 für 𝑡 < − ∥ 𝐴 ∥ und Σ𝐴(𝑡) = 1 für 𝑡 >∥ 𝐴 ∥
b) 𝑠 ≤ 𝑡 ⇒ Σ𝐴(𝑠) ≤ Σ𝐴(𝑡) und Σ𝐴(𝑠)Σ𝐴(𝑡) = Σ𝐴(𝑡)Σ𝐴(𝑠) = Σ𝐴(𝑠)
c) ∀𝜓 ∈ 𝐻 ∶ 𝜓 = ∫ 𝜓 𝑑Σ𝐴(𝑡) und 𝐴𝜓 = ∫ 𝑡 𝜓 𝑑Σ𝐴(𝑡)
d) Funktionen 𝜙 und A sind definiert, wenn sie für jedes 𝑡 ∈ [− ∥ 𝐴 ∥, ∥ 𝐴 ∥] definiert und messbar sind: 𝜙(𝐴) =
∫ 𝜙(𝑡) 𝑑Σ𝐴(𝑡)
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5 Lebesgue Integrale: Sparky

5 Lebesgue Integrale:

5.1 ’Funktionen’:
5.1.1 Lebesgue:

→ jede abzählbare Teilmenge von ℝ ist Lebesgue-Nullmenge (𝑚({𝑥}) = 0 , 𝑥 ∈ ℝ)
→ eine abzählbare Vereinigung von Nullmengen ist wieder eine Nullmenge

𝑚(
∞
⋃

𝑖=1
𝑋𝑖) ≤

∞
∑

𝑖=1
𝑚(𝑋𝑖) (Fuer 𝑋𝑖 ∩𝑋𝑗 = ∅ (𝑖 ≠ 𝑗) (paarweise disjunkt),... wird ’ ≤ ’ zu ’=’)

=
𝑘
∑

𝑖=1
|𝑏𝑖 − 𝑎𝑖| (Fuer endlich viele (k) Intervalle und jedes 𝑋𝑖 ist Intervall [𝑎𝑖, 𝑏𝑖])

𝑚(𝑌 ) ≤ 𝑚(𝑌 ∩𝑋) + 𝑚(𝑌 ⧵𝑋)

𝜈(∅) = 0
𝜈(𝐴1) + 𝜈(𝐴2) = 𝜈(𝐴1 ∪ 𝐴2) + 𝜈(𝐴1 ∩ 𝐴2)

5.1.2 Zählfunktion (/-maß) auf ℝ:

𝜇(𝐴) =
{

#𝐴 A endlich
∞ sonst

∫ℕ
𝑓𝑑𝑦 =

∞
∑

𝑛=1
𝑓 (𝑛), 𝑓 ∶ ℕ → ℝ,

∑

𝑓 (𝑛) abs konv.

5.1.3 Dirac auf ℝ:

1𝐴(𝑥0) ≡ 𝛿𝑥0 (𝐴) =
{1 𝑥0 ∈ 𝐴
0 𝑥0 ∉ 𝐴

∫𝑋
1ℚ(𝑥) 𝑑𝑥 = 𝑚(𝑋 ∩ℚ) = 0

∫𝑋 𝑓 (𝑥) 𝑑𝛿𝑥0 (𝑥) =
{𝑓 (𝑥0) 𝑥0 ∈ 𝑋
0 𝑥0 ∉ 𝑋

5.1.4 Simple function:

𝑆(𝑥) =
𝑛
∑

𝑖=1
𝑎𝑖 1𝐴𝑖 (𝑥) , 𝑎𝑖 ∈ ℝ≥0

∫𝑋
(
𝑛
∑

𝑖=1
𝑎𝑖 1𝐴𝑖 (𝑥)) 𝑑𝑥 =

𝑛
∑

𝑖=1
𝑎𝑖 𝑚(𝑋 ∩ 𝐴𝑖)

5.1.5 Compact support:

𝐶∞
𝑐 (ℝ,ℂ) = {𝑓 ∶ ℝ → ℂ glatt (∞ diff), 𝑓 (𝑥) = 0 ausserhalb}

supp𝑓 = {𝑥|𝑓 (𝑥) ≠ 0}
(Also das Intervall, auf dem die Funktion f nicht 0 ist)

5.1.6 Bump Funktion:

𝜂(𝑥) =

⎧

⎪

⎨

⎪

⎩

exp
(

− 1
1 − 𝑥2

)

|𝑥| < 1

0 |𝑥| ≤ 1
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5 Lebesgue Integrale: Sparky

5.2 Lebesgue-Integral:

i) ∫𝑋
𝑓 (𝑥) 𝑑𝑥 <∞

ii) 𝑓 (𝑥) = 𝑓+(𝑥) − 𝑓−(𝑥)

Für folgende Integrale muss jeweils i) gelten: ∫𝑋 𝑓 𝑑𝜈 = ∫𝑋 𝑓
+ 𝑑𝜈 − ∫𝑋 𝑓

− 𝑑𝜈
Dies Bedeutet, dass Integrale wie ∫ ∞

−∞ sin(𝑥)𝑑𝑥 = 0 nicht Lebesgue-integrierbar sind, da die Aufteilung in Integrale ober-
und unterhalb der x-Achse (𝑓+ und 𝑓−) divergiert.

iii) 𝜈(𝑥) = 0, f messbar: ∫𝑋
𝑓 (𝑥) 𝑑𝜈 = 0

iv) f, |𝑓 | ∈ 𝐿(𝑓, 𝜈) ∶
|

|

|

|

∫𝑋
𝑓 (𝑥) 𝑑𝜈

|

|

|

|

≤ ∫𝑋
|𝑓 (𝑥)| 𝑑𝜈

v)
5.2.1 Satz der dominierten/majorisierten Konvergenz:
∙ 𝑓𝑛 messbar? (stetige Funktionen sind messbar)
∙ lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓 (𝑥) messbar?

∙ ∃𝑔(𝑥) ≥ |𝑓𝑛(𝑥)| ∀𝑛 , ∫𝑋
𝑔(𝑥) 𝑑𝑥 <∞ ⇒ Lässt sich eine L.-int.bare Majorantenfunktion g(x) finden?

5.2.2 Monotone Konvergenz:
∙ 𝑓𝑛 ∶ 𝑋 → ℝ≥0 messbar? (stetige Funktionen sind messbar)
∙ 𝑓𝑛(𝑥) ≤ 𝑓𝑛+1(𝑥) ∀𝑥 (punktweise)?
∙ lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓 (𝑥) in ℝ ∪ {∞}?

(dom. Kon. bzw. monotone Konv.) ⟹ lim
𝑛→∞∫ 𝑓𝑛(𝑥) 𝑑𝑚(𝑥) = ∫ 𝑓 (𝑥) 𝑑𝑚(𝑥) ∧ 𝑓 L.-int.

vi)
5.2.3 Fubini:
∙ 𝜈1 measure auf 𝑋1 , 𝜈2 measure auf 𝑋2

∙ 𝑓 (𝑥1, 𝑥2) messbar mit 𝜈1 × 𝜈2
∙𝑋1, 𝑋2 𝜎 − finite (note: 𝜇([0, 1]) = ∞ nicht 𝜎-finite)
∙ falls < ∞ (sonst ∣ 𝑓 ∣) ∶

Fubini ⟹ ∫𝑋1

𝑑𝜈1(∫𝑋2

𝑑𝜈2 𝑓 (𝑥1, 𝑥2)) = ∫𝑋2

𝑑𝜈2(∫𝑋1

𝑑𝜈1 𝑓 (𝑥1, 𝑥2)) = ∫𝑋1×𝑋2

𝑑(𝜈1 × 𝜈2) 𝑓 (𝑥1, 𝑥2)

vii) Riemann int. ∃ (nicht Pol, uneigentlich, ...)

∙ messbare, kompakte Funktion
↪ endl. (e.g.: ⊂ ℝ, [0,∞) ∪ {∞})

↪ 𝑓+ und 𝑓− getrennt ⇒ ∫𝑋
𝑓+∕−(𝑥) 𝑑𝑥 <∞

↪ endliche Unstetigkeiten → aufteilen, raus nehmen
↪ f messbar (stetig?), |𝑓 | uneigentlich Riem. ⇒ 𝑓 Lebesgue-int. = 𝑓 Uneigentlich Riemann (nicht ∣ 𝑓 ∣)

(∫

∞

1

1
𝑥2
𝑑𝑥 = 1)

Ziel ist es, die Integrale so lange zu bearbeiten (begründet!), bis man sie als Riemann-Integral berechnen kann.
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5 Lebesgue Integrale: Sparky

5.2.4 Beispiele:

Satz der dom. Konv:

𝑓𝑛(𝑥) =
𝑛 sin( 𝑥𝑛 )
𝑥(𝑥2+1) , [−𝜋, 𝜋]

1.) 𝑓𝑛 messbar
2.) (L’Hôpital für g(x)=1/n und f(x)=sin(x/n))

lim
𝑛→∞

𝑓𝑛(𝑥) = lim
𝑛→∞

𝑛 sin(𝑥𝑛 )

𝑥(𝑥2 + 1)
= lim
𝑛→∞

𝑥 cos(𝑥𝑛 )

𝑛2 1
𝑛2

1
𝑥(𝑥2 + 1)

= 𝑥
𝑥(𝑥2 + 1)

lim
𝑛→∞

cos(𝑥
𝑛
) = 1

𝑥2 + 1

3.) f(x) messbar
4.) ∃𝑔(𝑥) ≥∣ 𝑓𝑛(𝑥) ∣ ∀𝑛 und g(x) integrierbar

→∣ 𝑓𝑛(𝑥) ∣=∣
𝑛 sin( 𝑥𝑛 )
𝑥(𝑥2+1) ∣≤∣

𝑛 𝑥𝑛
𝑥(𝑥2+1) ∣=∣

1
𝑥2+1 ∣= 𝑔(𝑥)

(theoretische Polstellen wie x=0 lassen sich einfach aus der Integralmenge herausnehmen)

5.) lim
𝑛→∞∫[−𝜋,𝜋]

𝑓𝑛(𝑥) 𝑑𝑚(𝑥) =(dom. konv.) ∫[−𝜋,𝜋]
1

𝑥2 + 1
𝑑𝑚(𝑥) =(Riemann int.) ∫

𝜋

−𝜋

1
𝑥2 + 1

𝑑𝑥 = 2 arctan(𝜋)

Monotone Konvergenz:

𝑓 (𝑥) = 𝑥 exp(−𝑥2

2 ) , 𝑥 ∈ [0,∞)

1.) 𝑓𝑛(𝑥) = (𝑓 ⋅ 1[0,𝑛])(𝑥)
𝑛→∞
←←←←←←←←←←←←←←←←←←←←←→ 𝑓 (𝑥)

2.) 𝑓𝑛+1(𝑥) ≥ 𝑓𝑛(𝑥)

3.) ∫[0,∞)
𝑓𝑛(𝑥) 𝑑𝑚(𝑥) = ∫[0,𝑛]

𝑓 (𝑥) 𝑑𝑚(𝑥) = ∫[0,𝑛]
𝑥𝑒−

𝑥2
2 𝑑𝑚(𝑥) = ∫

𝑛

0
𝑥𝑒−

𝑥2
2 𝑑𝑥 = 1 − exp(−𝑛

2

2
) <∞

4.) Monotone Konvergenz ⟶ ∫[0,∞)
𝑓 (𝑥) 𝑑𝑥 = lim

𝑛→∞∫[0,∞)
𝑓𝑛(𝑥) 𝑑𝑥 = lim

𝑛→∞
(1 − exp(−𝑛

2

2
)) = 1

Weiteres Beispiel:

(lim𝑛→∞) 1
1+𝑥𝑛 =

⎧

⎪

⎨

⎪

⎩

1 𝑥 ∈ [0, 1)
1
2

𝑥 = 1

⇒ ∫[0,1] 𝑓 = ∫[0,1) 𝑓 = 1 (Einzelne Punkte lassen sich ohne Einfluss entfernen und wieder hinzunehmen)

Fubini:
𝑓 ∶ (0, 1) × (0, 1) → ℝ sei gegeben durch:

𝑓 (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

1
𝑦2

falls 𝑥 < 𝑦

− 1
𝑥2

falls 𝑥 > 𝑦

Ziel wird es sein, die beiden folgenden Integrale zu bestimmen und aus derem Vergleich (Schlagwort: Fubini) eine Folge-
rung bezüglich der Produktmessbarkeit der Funktion f(x,y) zu machen. Argumentationen, warum Lebesgue-Integrale als
Riemann-Integrale berechnet werden können, sind notwendig!

1.)∫(0,1)

(

∫(0,1)
𝑓 (𝑥, 𝑦) 𝑑𝑚(𝑥)

)

𝑑𝑚(𝑦) = ∫(0,1)

[

∫

𝑦

0

1
𝑦2
𝑑𝑚(𝑥) − ∫

1

𝑦

1
𝑥2
𝑑𝑚(𝑥)

]

𝑑𝑚(𝑦)

= ∫(0,1)

[

1
𝑦2
𝑦 −

[

− 1
𝑥
]1
𝑦

]

𝑑𝑚(𝑦)

= ∫(0,1)
𝑑𝑚(𝑦) = 1
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2.)∫(0,1)

(

∫(0,1)
𝑓 (𝑥, 𝑦) 𝑑𝑚(𝑦)

)

𝑑𝑚(𝑥) = ∫(0,1)

[

− ∫

𝑥

0

1
𝑥2
𝑑𝑚(𝑦) + ∫

1

𝑥

1
𝑦2
𝑑𝑚(𝑦)

]

𝑑𝑚(𝑥)

= ∫(0,1)

[

− 1
𝑥2
𝑥 +

[

− 1
𝑦
]1
𝑥

]

𝑑𝑚(𝑥)

= −∫(0,1)
𝑑𝑚(𝑥) = −1

3.) Da die iterierten Integrale unterschiedlich sind, ist f(x,y) nicht produktmessbar.

6 Schwartz-Raum:

6.1 Definition:

(ℝ𝑛,ℂ) = {𝑓 ∈ 𝐶∞(ℝ𝑛,ℂ) | ∀𝛼, 𝛽 ∈ ℕ𝑛0, ∥ 𝑓 ∥𝛼,𝛽<∞}

∥ 𝑓 ∥𝛼,𝛽 = sup
𝑥∈ℝ𝑛

|𝑥𝛼𝜕𝛽𝑓 (𝑥)| , lim
|𝑥|→∞

(𝑥𝛼𝜕𝛽𝑓 (𝑥)) = 0

𝑥𝛼 = 𝑥𝛼11 𝑥
𝛼2
2 ... 𝜕𝛽 = 𝜕𝛽1𝑥1𝜕

𝛽2
𝑥2 ...

6.2 Beispiele:
1.) 𝑓1(𝑥) = 𝑒−5𝑖𝑥−𝑥

2

Schwartzfunktion, da für 𝑥→ ±∞ schnell genug gegen 0 und stetig (+ stetig diffbar)

→ 𝑒−5𝑖𝑥 mit 𝑥 ∈ ℝ auf Einheitskreis → Betrag ist 1 → 𝑒−𝑥
2 überwiegt

2.) 𝑓2(𝑥) = 𝑒−5𝑥−𝑖𝑥
2

keine Schwartzfunktion, da 𝑒−5𝑥 für 𝑥→ ±∞ nicht → 0

3.) 𝑓3(𝑥) = 𝑒−|𝑥|

keine Schwartzfunktion, da Ableitung nicht stetig (für 0 nicht definiert)

4.) 𝑓4(𝑥) =
1

1 + 𝑒3𝑥
keine Schwartzfunktion, da für 𝑥→ −∞ ∶ 𝑓5 → 1

5.) 𝑓5(𝑥) = (𝑥3 𝑑
𝑑𝑥

)3𝑒−𝑥
2

Schwartzfunktion, da Exponentialanteil überwiegt
vorderer Teils auf ein Polnynom P(x) mit Grad 6 zurückgeführt werden kann

6.) 𝑓6(𝑥) =
1
𝑥2

keine Schwartzfunktion, da per Definition: lim
|𝑥|→∞

(𝑥𝛼𝜕𝛽𝑓 (𝑥)) = 0

aber mit 𝛼 = 2 und 𝛽 = 0 ⇒ lim
|𝑥|→∞

(𝑥2 1
𝑥2

) = lim
|𝑥|→∞

(1) = 1 ≠ 0
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7 Fourier:

7.1 Fourier-Reihe:
7.1.1 Definitionen:
𝑓 (0) = 𝑓 (𝑇 )

𝑓 (𝑥) =
∑

𝑛∈ℤ
⟨𝑒𝑛|𝑓 ⟩ 𝑒𝑛(𝑥) , 𝑥 ∈ [0, 𝑇 ]

⟨𝑒𝑛|𝑓 ⟩ =

𝑇+𝑎

∫
0+𝑎

𝑒𝑛(𝑡)𝑓 (𝑡) 𝑑𝑡 , 𝜔 = 2𝜋
𝑇

𝑒𝑛(𝑡) =
1

√

𝑇
exp(𝑖𝜔𝑛𝑥) , 𝑛 ∈ ℤ ⇒ ⟨𝑒𝑛|𝑒𝑚⟩ = 𝛿(𝑛 − 𝑘)

⇒ 𝑓 (𝑥) =
𝑎0
2

+
∞
∑

𝑛=1
𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥)

𝑎𝑛 =
1
𝜋 ∫

2𝜋

0
𝑓 (𝑥) cos(𝑛𝑥)𝑑𝑥

𝑏𝑛 =
1
𝜋 ∫

2𝜋

0
𝑓 (𝑥) sin(𝑛𝑥)𝑑𝑥

𝑑𝑓
𝑑𝑥

=
∑

⟨𝑒𝑛|𝑓⟩
𝑑
𝑑𝑥
𝑒𝑛

Definitionen wie Vorfaktoren (2𝜋,...), Integralgrenzen, Koeffizienten oder Basiselemente können unterschiedlich ausfal-
len (Konvention).

7.1.2 Parsevals Identität:

∫

𝑇

0
|𝑓 (𝑡)|2𝑑𝑡 =

∑

𝑘∈ℤ
|𝑓 (𝑘)|2

7.2 Fourier-Transformation:
7.2.1 Definitionen:

 (𝑓 )(𝑝) = ∫ 𝑓 (𝑥)𝑒−𝑖𝑝𝑥 𝑑𝑛𝑥 = 𝑓 (𝑝)

−1(𝑔)(𝑥) = ∫
1

(2𝜋)𝑛
𝑔(𝑝)𝑒𝑖𝑝𝑥 𝑑𝑛𝑝 = 𝑔̌(𝑥)

𝐺(𝑡, 𝑥) = ∫
𝑑𝜔
2𝜋 ∫

𝑑𝑑𝑝
(2𝜋)𝑑

𝑒−𝑖𝜔𝑡+𝑖𝑝𝑥𝐺̃(𝑤, 𝑝)

Hierbei kann ebenfalls die Definition für den 2𝜋 Vorfaktor oder das Vorzeichen im Exponenten unterschiedlich (je nach
Konvention) ausfallen.

7.2.2 Beispiele:

i) 𝑓 (𝑥) = 𝑒−𝛾|𝑥|

←←←←←←←←→ 𝑓 (𝑝) =

2𝛾
𝑝2 + 𝛾2

ii) 𝑓 (𝑥) = 1[−𝑇 ,𝑇 ](𝑥)

←←←←←←←←→ 𝑓 (𝑝) = 2

𝑝
sin(𝑝𝑇 )
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7.2.3 Regeln:

i)  ( 𝜕
𝑛

𝜕𝑥𝑛
𝑓 )(𝑝) = (𝑖𝑝)𝑛 (𝑓 )(𝑝)

Achtung: wenn  mit 𝑒𝑖𝑝𝑥 defininert wurde →  (𝜕𝑛𝑓 ) = (−1)𝑛(𝑖𝑝)𝑛

ii)  (𝑥𝑛𝑓 ) = 𝑖𝑛𝜕𝑛𝑝𝑓 (𝑝)

iii)  (𝑒𝑖𝑘
′𝑥)(𝑘) = 2𝜋𝛿(𝑘′ − 𝑘) ⟹ ∫ 𝑑𝑝 𝑒−𝑖𝑝(𝑥−𝑥0) = 2𝜋𝛿(𝑥 − 𝑥0)

Achtung: wenn  mit 1
2𝜋

definiert wurde ⟶  (𝑒𝑖𝑘
′𝑥)(𝑘) = 𝛿(𝑘′ − 𝑘)

𝑓 (𝑥) = 1 → ∫
𝑑𝑘
2𝜋
𝑓 (𝑘)𝑒𝑖𝑘𝑥 = 1 ⟶ 𝑓 (𝑘) = 𝛿(𝑘)2𝜋 → ∫ 𝑑𝑥 𝑒−𝑖𝑘𝑥 = 𝛿(𝑘)2𝜋

iv) ⟨𝑓 |𝑔⟩ = ⟨ (𝑓 )(𝑝)| (𝑔)(𝑝)⟩

↪ ⟨−1(𝜙)(𝑝)|𝑔(𝑝)⟩ = ⟨𝜙(𝑥)|−1(𝑔)(𝑥)⟩

v) (𝑓 ⋆ 𝑔)(𝑥) = ∫ 𝑓 (𝑢)𝑔(𝑥 − 𝑢) 𝑑𝑛𝑢 (Faltungsintegral)

↪  (𝑓 ⋆ 𝑔)(𝑝) = 𝑓 (𝑝)𝑔̂(𝑝)

↪ −1( (𝑔)) ⋆ −1( 1
𝑝2 + 1

)

= −1(  (𝑔)
𝑝2 + 1

)

7.2.4 Parsevals Theorem:

∫

∞

−∞
|𝑓 (𝑡)|2 𝑑𝑡 = 1

2𝜋 ∫

∞

−∞
| (𝑓 )(𝜔)|2 𝑑𝜔

7.2.5 Zeit-Verschiebung:

{𝑓 (𝑡 − 𝑡0)} =  (𝜔) exp(−𝑖𝜔𝑡0)

7.2.6 Skalierung:

{𝑓 (𝑎𝑡)} = 1
|𝑎| (𝜔𝑎 )
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8 Distributionen:

8.1 Verschiedene Arten:
8.1.1 Temperierte Distributionen:

Temperierte Distributionen sind stetige, lineare Funktionale auf dem Schwartz-Raum (stetige lineare Abbildungen 𝑇 ∶
(ℝ𝑛) → ℂ). Die Menge der temperierten Distributionen bildet den Dualraum 𝑇 ∈  ′(ℝ𝑛). Wichtig ist, dass sie nur auf
Funktionen mit bestimmten Eigenschaften (Schwartzraum ⇒ 𝑓 (𝑛)(±∞) = 0) angewendet werden.
Es gilt:

⇒ 𝑇𝜙(𝑓 ) = (𝜙, 𝑓 ) = ∫ 𝜙(𝑥)𝑓 (𝑥) 𝑑𝑛𝑥

i) (ℎ𝜙, 𝑓 ) = (𝜙, ℎ𝑓 ) ∀𝑓, ℎ𝑓 ∈ 
ii) (𝜕𝛽𝜙, 𝑓 ) = (𝜙, (−1)|𝛽|𝜕𝛽𝑓 )

iii) ( (𝜙), 𝑓 ) = (𝜙, (𝑓 ))
iv) (𝜙 ⋆ 𝑓, 𝑔) = (𝜙, 𝑓− ⋆ 𝑔) , 𝑓−(𝑥) = 𝑓 (−𝑥)

8.1.2 Dirac-Distribution:

⇒ (𝛿𝑥0 , 𝑓 ) = ∫

𝑏

𝑎
𝛿(𝑥 − 𝑥0)𝑓 (𝑥) 𝑑𝑥 =

{𝑓 (𝑥0) 𝑥0 ∈ [𝑎, 𝑏]
0 𝑥0 ∉ [𝑎, 𝑏]

Anmerkung:

∫
1
2𝜋
𝑒𝑖𝑝𝑥0 (𝑒−𝑖𝑝𝑥, 𝑓 ) 𝑑𝑝 = 1

2𝜋 ∫ ∫ 𝑑𝑝 𝑑𝑥 𝑒𝑖𝑝𝑥0𝑒−𝑖𝑝𝑥𝑓 (𝑥) = 𝑓 (𝑥0) ✓

′′
∫

𝑑𝑝
2𝜋
𝑒−𝑖𝑝(𝑥−𝑥0) = 𝛿(𝑥 − 𝑥0)′′ ↯ (Integral existiert so eig. nicht)

Umgang mit Distributionen:

( 𝑑
𝑑𝑥
𝛿𝑥0 , 𝑓 ) = ∫ 𝑓 (𝑥) 𝑑

𝑑𝑥
(𝛿𝑥0 ) 𝑑𝑥

=
[

𝑓 (𝑥)𝛿𝑥0

]∞

−∞
− ∫ 𝛿(𝑥 − 𝑥0)

𝑑
𝑑𝑥

(𝑓 (𝑥)) 𝑑𝑥 |

|

|

(𝑓 ∈  → 𝑓 (±∞) = 0)

= −(𝛿𝑥0 ,
𝑑
𝑑𝑥
𝑓 )

⇒ ( 𝑑
𝑑𝑥
𝛿𝑥0 , 𝑓 ) = −𝑓 ′(𝑥0)

8.1.3 Heaviside-Distribution:

⇒ Θ𝑡0 (𝑡) = Θ(𝑡 − 𝑡0) =
{1 𝑡 ≥ 𝑡0
0 𝑡 < 𝑡0

⇒ (Θ𝑡0 , 𝑓 ) = ∫

∞

𝑡0
𝑓 (𝑡) 𝑑𝑡

⇒ ( 𝑑
𝑑𝑡

Θ𝑡0 , 𝑓 ) = (𝛿𝑡0 , 𝑓 )

⇒ ( 𝑑𝑑𝑡 ((𝑡 − 𝑡0)Θ𝑡0 ), 𝑓 ) = (Θ𝑡0 , 𝑓 )

24 HöMa3 - WiSe 2025/26



9 Fundamentallösungen: Sparky

9 Fundamentallösungen:

9.1 Adjungierung:

⟨𝑃 (𝜕)𝑓 |𝑔⟩ = ⟨𝑓 |𝑃 †(𝜕)𝑔⟩

𝑃 (𝜕)𝑓 =
∑

𝛼
ℎ𝛼(𝑥)(𝜕𝛼𝑓 )

𝑃 †(𝜕)𝑓 =
∑

𝛼
(−1)|𝛼|𝜕𝛼(ℎ𝛼(𝑥)𝑓 )

9.2 Lösungsvorgang:
9.2.1 Homogen:

𝑃 (𝜕)𝐺 = 𝛿 ⟶ 𝑃 (𝜕)𝐺0 = 0 ⟹ 𝐺 + 𝐺0 (auch Lösung)

9.2.2 Inhomogen:

𝑃 (𝜕)𝜙 = 𝑓 ⇒ 𝜙 = 𝐺 ⋆ 𝑓

9.2.3 Anleitung:

1.) Fourier-space: 𝑃 (𝜕)𝐺 = 𝛿
′𝐹𝑜𝑢𝑟𝑖𝑒𝑟−𝑠𝑝𝑎𝑐𝑒′
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑃 (𝜕)𝐺(𝑥) = 𝑃 (𝜕)∫

𝑑𝑑𝑝
(2𝜋)𝑑

𝑒𝑖𝑝̄𝑥̄𝐺̂(𝑝) = ∫
𝑑𝑑𝑝
(2𝜋)𝑑

𝑒𝑖𝑝̄𝑥̄ 1 = 𝛿

2.) Diff.op.: ⇒ 𝑃 (𝜕𝑥)𝑒𝑖𝑝̄𝑥̄ = 𝑃 (𝑖𝑝)𝑒𝑖𝑝̄𝑥̄

3.) Umstellen: 𝐺(𝑥) = −1
(

1
𝑃 (𝑖𝑝)

)

= ∫
𝑑𝑑𝑝
(2𝜋)𝑑

𝑒𝑖𝑝̄𝑥̄ 1
𝑃 (𝑖𝑝)

Inhomogen:

4.) Rücktrafo: −1(𝜙(𝑝)) = −1(𝐺(𝑝)𝑓 (𝑝)) = 𝐺(𝑥) ⋆ 𝑓 (𝑥)

5.) 𝜙(𝑥) = ∫ 𝑓 (𝑥′)𝐺(𝑥 − 𝑥′) 𝑑𝑛𝑥′
(

= ∫ 𝑓 (𝑥 − 𝑥′)𝐺(𝑥′) 𝑑𝑛𝑥′
)

Anmerkung: Im Allgemeinen befinden wir uns in n Dimensionen, daher sind x, p,... ’Vektoren’. Im Exponenten wurde
das deutlich gemacht, sonst wurde darauf verzichtet.
Man kann hierbei auch etwas anders vorgehen: Anstelle von 𝜙 bzw. G und f bzw 𝛿 in ’Fourier-Form’ zu schreiben (NICHT
WIRKLICH TRANSFORMIEREN!) und den (Ableitungs)Operator direkt auf 𝑒𝑖𝑥𝑝 anzuwenden, da im Integral ̂𝐺(𝑝) nicht
von x abhängt, kann man auch einer Fouriertransformation beider (ganzen) Seiten durchführen und anschliessend Partiell
integrieren (um den Ableitungsopertator P auf die e-Funktion anwenden zu können). Die Allgemeine Idee bleibt jedoch,
in den ’Fourier-Raum’ zu gehen, um Ableitungsoperatoren ’auf die andere Seite zu bekommen’.

9.3 Beispiele:
9.3.1 reines Zeitableitungspolynom:

𝑃 ( 𝑑𝑑𝑡 ) = ( 𝑑𝑑𝑡 )
𝑛+1 ⟶ 𝐺(𝜔) = 1

(𝑖𝜔)𝑛+1 ⟶ 𝐺(𝑡) = 𝑡𝑛

𝑛!Θ(𝑡)

9.3.2 harm. Oszillator:

( 𝑑
2

𝑑𝑡2 + 2𝛾 𝑑𝑑𝑡 + 𝜔
2
𝑜) ⟶

1
−𝑝2+2𝑖𝛾𝑝+𝜔2

0
,𝛾 < 𝜔0

𝑝± = 𝑖𝛾 ±
√

𝜔2
0 − 𝛾

2 = 𝑖𝛾 ± 𝜔⟶ 𝐺(𝑡) = Θ(𝑡) 𝑒
−𝛾𝑡

𝜔 sin(𝜔𝑡)
𝛾 = 0 divergiert → Dämpfung kontrolliert Peak → Resonanz
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Inhomogen:

( 𝑑
2

𝑑𝑡2
+ 2𝛾 𝑑

𝑑𝑡
+ 𝜔2

𝑜)𝜙 = 𝑒𝑖𝛼𝑡

𝜙 = 𝐺 ⋆ 𝑓

= ∫ Θ(𝑡)𝑒
−𝛾𝑡

𝜔
sin(𝜔𝑡) 𝑒𝑖𝛼(𝑢−𝑡) 𝑑𝑡

= 𝑒𝑖𝛼𝑢 ∫

∞

0

𝑒−𝛾𝑡

𝜔
( 1
2𝑖
(𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡)) 𝑒−𝑖𝛼𝑡 𝑑𝑡

= 𝑒𝑖𝛼𝑢

2𝑖𝜔 ∫

∞

0

(

𝑒−(−𝑖𝜔+𝑖𝛼+𝛾)𝑡 − 𝑒−(𝑖𝜔+𝑖𝛼+𝛾)𝑡
)

𝑑𝑡

= 𝑒𝑖𝛼𝑢

2𝑖𝜔

(

1
(−𝑖𝜔 + 𝑖𝛼 + 𝛾)

− 1
(𝑖𝜔 + 𝑖𝛼 + 𝛾)

)

(hier kein Delta, weil 𝜔, 𝛼 und 𝛾 reell (?) (Nenner ≠ 0))

9.3.3 Laplace:

Δ =
𝑛
∑

𝑖=1
( 𝜕
𝜕𝑥𝑖

)2 = 1
√

det 𝑔
𝜕𝜇(

√

det(𝑔) 𝑔𝜇𝜈𝜕𝜈)

 ((−Δ)𝜉𝑓 )(𝑝) = ∫ 𝑒−𝑖𝑝𝑥(−Δ)𝜉𝑓 (𝑥) 𝑑𝑥 = ∫ (𝑝)2𝜉 𝑒−𝑖𝑝𝑥𝑓 (𝑥) 𝑑𝑥 = 𝑝2𝜉𝑓 (𝑝)

Erinnerung Metrischer Tensor:

𝑔 = 𝐽𝑇 𝐽

𝐽 =
𝜕(𝑥, 𝑦, 𝑧)
𝜕(𝑎, 𝑏, 𝑐)

=
⎛

⎜

⎜

⎝

𝜕𝑎𝑥 𝜕𝑏𝑥 𝜕𝑐𝑥
𝜕𝑎𝑦 𝜕𝑏𝑦 𝜕𝑐𝑦
𝜕𝑎𝑧 𝜕𝑏𝑧 𝜕𝑐𝑧

⎞

⎟

⎟

⎠

Beispiel Kugelkoordinaten:

𝐽 =
⎛

⎜

⎜

⎝

sin(𝜃) cos(𝜙) 𝑟 cos(𝜃) cos(𝜙) −𝑟 sin(𝜃) sin(𝜙)
sin(𝜃) sin(𝜙) 𝑟 cos(𝜃) sin(𝜙) 𝑟 sin(𝜃) cos(𝜙)

cos(𝜃) −𝑟 sin(𝜃) 0

⎞

⎟

⎟

⎠

⟶ 𝑔 =
⎛

⎜

⎜

⎝

1 0 0
0 𝑟2 0
0 0 𝑟2 sin2(𝜃)

⎞

⎟

⎟

⎠

⟶ det(𝑔) = 𝑟4 sin2(𝜃)

9.3.4 Laplace (1D):

(Analog zu Beispiel 1):
Δ𝜙(𝑥) = 4𝜋𝜌(𝑥)

Δ∫
1
2𝜋
𝑒𝑖𝑘𝑥𝜙(𝑘) 𝑑𝑘 = ∫

1
2𝜋
𝑒𝑖𝑘𝑥4𝜋𝜌(𝑘) 𝑑𝑘

∫
1
2𝜋

(𝑖𝑘)2𝑒𝑖𝑘𝑥𝜙(𝑘) 𝑑𝑘 = ∫
1
2𝜋
𝑒𝑖𝑘𝑥4𝜋𝜌(𝑘) 𝑑𝑘 ⟺ (𝑖𝑘)2𝜙(𝑘) − 4𝜋𝜌(𝑘) = 0

⟹ 𝜙(𝑘) = −4𝜋
𝑘2
𝜌(𝑘)

−∫
1
2𝜋

4𝜋𝑒𝑖𝑘𝑥 1
𝑘2
𝑑𝑘 = −2∫

𝑒𝑖𝑘𝑥

𝑘2
𝑑𝑘

|

|

|

|

𝑘→ 𝑘 − 𝑖𝜖 oberer Halbebene → 𝑥 > 0 (|𝑒𝑖𝑘𝑥| = 𝑒−𝑥𝐼𝑚(𝑘))

= −2 lim
𝜖→0∫

𝑒𝑖𝑘𝑥𝑒𝜖𝑥

(𝑘 − 𝑖𝜖)2
Θ(𝑥)𝑑𝑘

= −2 lim
𝜖→0

2𝜋𝑖𝑒𝜖𝑥Θ(𝑥) lim
𝑘→𝑖𝜖

𝑑
𝑑𝑘

(𝑒𝑖𝑘𝑥)

= 4𝜋𝑥Θ(𝑥)

26 HöMa3 - WiSe 2025/26



9 Fundamentallösungen: Sparky

9.3.5 Poisson eq.:

(−Δ)𝜉𝜙 = 𝜌⇒ 𝜙(𝑥) = ∫ 𝐺(𝑥 − 𝑦)𝜌(𝑦) 𝑑𝑑𝑦

𝐺(𝑥) =
Γ( 𝑑2 − 𝜉)

Γ(𝜉)4𝜉𝜋𝑑∕2
1

|𝑥|𝑑−2𝜉

→ Γ(𝜖) =
Γ(1 + 𝜖)

𝜖

→
1

|𝑥|2𝜉
= 𝑒−2𝜉 ln(|𝑥|)

𝑇
= (1 − 2𝜉 ln(|𝑥|))

9.3.6 d’Alembert:

Mit: □ = 1
𝑐2

𝜕2

𝜕𝑡2 − Δ (im Folgenden c=1)

0.) □𝐺 = 𝛿 (note: step 1.) and 2.) is the ’different way’ mentioned earlier)

1.) Fourier: ∫ 𝑑𝑡 ∫ 𝑑𝑑𝑥 𝑒𝑖𝜔𝑡−𝑖𝑝𝑥(□𝐺(𝑥, 𝑡)) = 1 ⟶ 𝐺̂(𝑤, 𝑝) = − 1
𝜔2−𝑝2

2.) Inverse-Fourier: 𝐺(𝑡, 𝑥) = − ∫ 𝑑𝜔
2𝜋 ∫ 𝑑𝑑𝑝

(2𝜋)𝑑 𝑒
−𝑖𝜔𝑡+𝑖𝑝𝑥 1

𝜔2−𝑝2

3.) um 𝑖𝜖 verschieben: damit nur für t>0 Lösung ≠ 0 , |𝑒−𝑖𝜔𝑡| = 𝑒𝑡𝐼𝑚(𝜔), 𝐼𝑚(𝜔) < 0
→ 𝜔 = −𝑖𝜖 ± |𝑝|
→ 𝐺̂𝑟𝑒𝑡(𝜔, 𝑝) = − 1

(𝜔+𝑖𝜖)2−|𝑝|2

4.) Nullstellen aufteilen: 𝐺̂𝑟𝑒𝑡(𝜔, 𝑝) = 1
2|𝑝|

( 1
𝜔+(𝑖𝜖+|𝑝|) −

1
𝜔+(𝑖𝜖−|𝑝|)

)

5.) Residuensatz und 𝜖 → 0:
→ 𝐺𝑟𝑒𝑡(𝑡, 𝑥) = 𝑖Θ(𝑡) ∫ 𝑑𝑑𝑝

(2𝜋)𝑑
1

2|𝑝|𝑒
𝑖𝑝𝑥(𝑒−𝑖|𝑝|𝑡 − 𝑒𝑖|𝑝|𝑡)

Für d=3:

6.) Kugelkoordinaten (Jacobi-Determinante!), wobei die Achse passend gewählt wird, damit gilt: 𝑝̄𝑥̄ = |𝑝||𝑥| cos(𝜃)
→ 𝐺𝑟𝑒𝑡(𝑥, 𝑡) = 𝑖Θ(𝑡) ∫ ∞

0
𝑑|𝑝|
(2𝜋)𝑑 |𝑝|

2 1
2|𝑝| ∫

𝜋
0 𝑑𝜃 sin(𝜃) ∫ 2𝜋

0 𝑑𝜑𝑒𝑖|𝑝||𝑥| cos(𝜃)(𝑒−𝑖|𝑝|𝑡 − 𝑒𝑖|𝑝|𝑡)

7.) ∫ ∞
0 𝑑|𝑝|(𝑒𝑖|𝑝|(𝑡−|𝑥|) + 𝑒−𝑖|𝑝|(𝑡−|𝑥|)) ∼ 2𝜋𝛿(𝑡 − |𝑥|)

mit: ∫ ∞
0 𝑑|𝑝|𝑒𝑖|𝑝|(𝑡−|𝑥|)

|𝑝|→−|𝑝|
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ∫ 0

−∞ 𝑑|𝑝|𝑒
−𝑖|𝑝|(𝑡−|𝑥|)

8.) 𝛿(𝑡 + |𝑥|) wird (physikalisch mit t>0, |x|>0) nicht betrachtet

⟹ 𝐺(𝑟̄, 𝑡) = 1
4𝜋|𝑥|Θ(𝑡)𝛿(𝑡 −

|𝑥|
𝑐 )

9.4 Green’s functions:
Ausgangspunkt:

𝑃 (𝜕)𝜙(𝑥) = 𝑓 (𝑥)

𝑃 (𝜕) =
∑

𝛼 ℎ𝛼(𝑥)𝜕𝛼 (Koeffizienten ℎ𝛼(𝑥) nicht mehr konstant)

Erweiterung der Fund.-Lsg.: 𝐹 (𝑥) → 𝐺(𝑥, 𝑦)
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mit: 𝐺(𝑥, 𝑦) = 𝐹 (𝑥 − 𝑦) ist Greens-Funktion zu einer Fundamentallösung falls diese existiert.

ausserdem: G(x+a,y+a) = F((x+a)-(y+a)) = F(x-y) = G(x,y) (Translations-Invarianz)

Es gilt:
𝑃 (𝜕)𝐺(𝑥, 𝑦) = 𝛿(𝑥 − 𝑦)

Für A positiver, geschlossener, selbst-adjungierter Operator:

𝐺 = 1
𝐴 = ∫ ∞

0 𝑑𝑡 𝑒−𝑡𝐴

mit: 𝑑
𝑑𝑡𝑒

−𝑡𝐴 = −𝐴𝑒−𝑡𝐴 und 𝑒−𝑡𝐴
|

|

|

|𝑡=0
= 𝟙

und damit: 𝐴𝐺 = ∫ ∞
0 𝑑𝑡 𝐴 𝑒−𝑡𝐴 = ∫ ∞

0 𝑑𝑡(− 𝑑
𝑑𝑡 )𝑒

−𝐴𝑡 = −𝑒−𝑡𝐴
|

|

|

|

∞

0
= 𝟙

(script p. 258 ff.)
Weitere Green’s-Funktionen sind beispielsweise hier zu finden: https://tinyurl.com/2utd3acp
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10 Differentialgleichungen: Sparky

10 Differentialgleichungen:

ODE, PDE (partiell) → Ordnung (Grad) → linear (𝑦(𝑡)2, 𝑒𝑦(𝑡) ↯)→ homogen (=0)

10.1 Fourier:

1.)  (𝑃 ( 𝑑
𝑑𝑥

)𝐺(𝑥)) =  (𝑓 (𝑥))

2.) −1(𝐺(𝑝)) = 𝐺(𝑥) = 𝑓 (𝑥) ⋆ −1
(

1
𝑃 (𝑖𝑝)

)

10.2 Initial value problems + Linear ODEs:
10.2.1 Picard-Lindelöf:

∃ eindeutige Lösung, wenn:
∙ offene Teilmenge
∙ Trafo stetig → Matrix (Lipschitz-stetig)
|𝑌 (𝑡, 𝑥1) − 𝑌 (𝑡, 𝑥2)| ≤ 𝐿|𝑥1 − 𝑥2| (wenn nicht, dann mehrere Lösungen) , 𝑑

𝑑𝑡𝑥 = 𝑌 (𝑡, 𝑥)
∙ Anfangsbedingungen

10.2.2 Flows:

Flow: 𝜑 ∶ 𝐼 ×𝑋 → 𝑋 , 𝐼 ⊂ ℝ , 𝑋 ⊂ ℝ𝑁

for any 𝑥 ∈ 𝑋 and 𝑠, 𝑡 ∈ 𝐼 :
∙ 𝜑(0, 𝑥) = 𝑥
∙ 𝜑(𝑠, 𝜑(𝑡, 𝑥)) = 𝜑(𝑠 + 𝑡, 𝑥)

Fixpunkte:
für 𝑥̇(𝑡) = 𝑌 (𝑥(𝑡)) , 𝑥(𝑡0) = 𝑥0

Fixpunkt 𝑥⋆:

𝑌 (𝑥⋆) = 0 ⇒ stationäre Lösung 𝒙(𝒕) = 𝒙⋆

Stabilitärsmatrix:
𝑌 ′ = (𝜕𝑖𝑌 𝑗)(𝑥⋆) (at 𝑥⋆)

(Erinnerung an Jacobi-Matrix)

∙ 𝜑(𝑡, ℎ0) = ℎ(𝑡) = 𝑒(𝑡−𝑡0)𝑌 ′ℎ0
∙ falls: 𝑌 ′ = 𝑆−1𝐷𝑆 (diagonalisierbar) → (𝑆ℎ(𝑡))𝑖 = 𝑒(𝑡−𝑡0)𝜈𝑖 (𝑆ℎ0)𝑖

mit:
eigen-perturbation = Eigenvector von Y’
𝜈𝑖 = Eigenwerte von Y’:
∙ relevant ∶ 𝑅𝑒(𝜈𝑖) > 0
∙ marginal ∶ 𝑅𝑒(𝜈𝑖) = 0
∙ irrelevant ∶ 𝑅𝑒(𝜈𝑖) < 0

Beispiel: gedämpftes Pendel:
𝜃̈(𝑡) = −𝜇𝜃̇(𝑡) − 𝑔

𝑙 sin(𝜃(𝑡))

𝜃̄ = (𝜃̇, 𝜃)𝑇
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Fixpunkte:
̇̄𝜃⋆ = (0, 0)𝑇 = (−𝜇𝜔⋆ − 𝑔

𝑙 sin(𝜃⋆) , 𝜔⋆)
𝑇

→ 𝜔⋆ = 0 , sin(𝜃⋆) = 0 , 𝜃⋆ = 𝑛𝜋 (𝑛 ∈ ℕ𝟘 bzw. 𝑛 ∈ {0, 1} )

⇒ 𝜃̄𝑛 = (0 , 𝑛𝜋)𝑇 (Fixpunkte)

Stabilitätsmatrix:
𝐹 ∶ ℝ𝟚 → ℝ𝟚 , (𝜃̇, 𝜃) ↦ (−𝜇𝜔 − 𝑔

𝑙 sin(𝜃) , 𝜔) = 𝐹 (𝜔, 𝜃)

𝐽𝐹 = [ 𝜕𝐹𝜕𝑥1
, ..., 𝜕𝐹𝜕𝑥𝑛

] (hier 𝑥1 = 𝜔 und 𝑥2 = 𝜃)

𝐽𝐹 ,11 = −𝜇 , 𝐽𝐹 ,12 = − 𝑔
𝑙 cos(𝜃) , 𝐽𝐹 ,21 = 1 , 𝐽𝐹 ,22 = 0

Eigenwerte:
det(𝐽𝐹 − 𝜆) = 0

Für Fixpunkte mit Eigenwerten von 𝐽𝐹 𝜆±:
(𝜇 > 0)

𝜽̄𝟏 = (𝟎, 𝟎)𝑻 ∶
∙ Pendel hängt nach unten
∙ 𝑅𝑒(𝜆+) < 0 , 𝑅𝑒(𝜆−) < 0:
→ kleine Auslenkung → klingt mit Reibung ab
⇒ asymptotisch stabiler Fixpunkt

𝜽̄𝟐 = (𝟎, 𝝅)𝑻 ∶
∙ Pendel hängt senkrecht nach oben
∙ 𝑅𝑒(𝜆+) < 0 , 𝑅𝑒(𝜆−) > 0:
→ Sattelpunkt
→ kleine Auslenkung → bricht zusammen
⇒ Fixpunkt instabil

(script p. 269 ff.)

10.2.3 Folge:

𝑥̇(𝑡) = 𝑌 (𝑡, 𝑥(𝑡)) , 𝑥(𝑡0) = 𝑥0

𝑥𝑛+1(𝑡) = 𝑥0 + ∫

𝑡

𝑡0
𝑌 (𝑠, 𝑥𝑛(𝑠)) 𝑑𝑠

𝑥(𝑡) = 𝑥0 + ∫

𝑡

𝑡0
𝑌 (𝑠, 𝑥(𝑠)) 𝑑𝑠

(

lim
𝑛→∞

)

Beispiel:

𝑥̇ = 𝑥 , 𝑡0 = 0

𝑥𝑛+1 = 𝑥0 + ∫

𝑡

0
𝑌 (𝑠, 𝑥𝑛(𝑠)) 𝑑𝑠

𝑥1 = 𝑥0 + ∫

𝑡

0
𝑥0 𝑑𝑠

𝑥2 = 𝑥0 + ∫

𝑡

0
𝑥1(𝑠) 𝑑𝑠 = 𝑥0 + ∫

𝑡

0
(𝑥0 + 𝑥0𝑠) 𝑑𝑠 = 𝑥0 + 𝑥0𝑡 +

1
2
𝑥0𝑡

2

... ⇒ 𝑥 = 𝑥0𝑒
𝑡
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10.2.4 Wronskian:

𝑊 (𝑥0, ..., 𝑥𝑛−1)(𝑡) = det

⎛

⎜

⎜

⎜

⎜

⎝

𝑥0 𝑥1 ... 𝑥𝑛−1
𝑥(1)0 𝑥(1)1 ... 𝑥(1)𝑛−1
...

𝑥(𝑛−1)0 𝑥(𝑛−1)1 ... 𝑥(𝑛−1)𝑛−1

⎞

⎟

⎟

⎟

⎟

⎠

Linear Unabhängig: W≠0

𝑊𝜈(𝑥0, ..., 𝑥𝑛−1)(𝑡) = det

⎛

⎜

⎜

⎜

⎝

𝑥0 ... 0 ... 𝑥𝑛−1
𝑥(1)0 ... 0 ...

...
... 𝑓 (𝑡) ...

⎞

⎟

⎟

⎟

⎠

(Spalte 𝜈)

10.2.5 Lösung lin. DGL:

𝑦(𝑡) =
𝑛
∑

𝜈=1
𝑦𝜈(𝑡)

[

𝑐ℎ𝑜𝑚𝜈 + ∫

𝑡

𝑡0
((−1)𝑛+𝜈

𝑊𝜈(𝑠)
𝑊 (𝑠)

)𝑑𝑠
]

Beispiel:
𝑥(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐

Hierbei wird die Basis gebildet: 𝑥0(𝑡) = 1 , 𝑥1(𝑡) = 𝑡 , 𝑥2(𝑡) = 𝑡2

𝑊 (𝑡) = det
⎛

⎜

⎜

⎝

1 𝑡 𝑡2
0 1 2𝑡
0 0 2

⎞

⎟

⎟

⎠

= 2 ≠ 0 (linear unabhängige Basis!)

Beispiel für inhomogene DGLs:
𝑦′′ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑓 (𝑡)

1.) homogene Gleichung: 𝑦′′ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 0
(Grad 2 → 2 Linear unabhängige Lösungen):
𝑦ℎ(𝑡) = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡)

2.) 𝑊 (𝑡) = det
(

𝑦1(𝑡) 𝑦2(𝑡)
𝑦′1(𝑡) 𝑦′2(𝑡)

)

= 𝑦1(𝑡)𝑦′2(𝑡) − 𝑦
′
1(𝑡)𝑦2(𝑡)

3.)

𝑊1(𝑡) = det
(

0 𝑦2(𝑡)
𝑓 (𝑡) 𝑦′2(𝑡)

)

= −𝑓 (𝑡)𝑦2(𝑡)

𝑊2(𝑡) = det
(

𝑦1(𝑡) 0
𝑦′1(𝑡) 𝑓 (𝑡)

)

= 𝑓 (𝑡)𝑦1(𝑡)

4.) 𝑦(𝑡) =
𝑛
∑

𝜈=1
𝑦𝜈(𝑡)

[

𝑐ℎ𝑜𝑚𝜈 + ∫ 𝑡𝑡0 ((−1)
𝑛+𝜈 𝑊𝜈 (𝑠)

𝑊 (𝑠) )𝑑𝑠
]

Einfaches Beispiel:

𝑥′(𝑡) + 𝑚𝑥(𝑡) = 𝑓 (𝑡)

1.) homogene Lösung: 𝑥′ + 𝑚𝑥 = 0 ⇒ 𝑥ℎ(𝑡) = 𝑐𝑒−𝑚𝑡

hierbei: Anfangsbedingungen für c
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2.) inhomogene Lösung:
𝑎) 𝑥𝑝(𝑡) → 𝑐(𝑡)𝑒−𝑚𝑡 (Variation der Konstanten)
→ 𝑐′(𝑡)𝑒−𝑚𝑡 − 𝑚𝑐(𝑡)𝑒−𝑚𝑡 + 𝑚𝑐(𝑡)𝑒−𝑚𝑡 = 𝑓 (𝑡)
⇒ 𝑐′(𝑡) = 𝑓 (𝑡)𝑒𝑚𝑡

𝑏)𝑑𝑐
𝑑𝑡

= 𝑓 (𝑡)𝑒𝑚𝑡 (Separation der Variablen)

→ 𝑐𝑃𝑎𝑟𝑡. = ∫

𝑡

𝑡0
𝑓 (𝑠)𝑒𝑚𝑠𝑑𝑠

⇒ 𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)

Mit Wronskian:

1.)𝑊 = 𝑒−𝑚𝑡 ≠ 0
2.)𝑊𝜈 = 𝑓 (𝑡)

⇒ 𝑥(𝑡) = 𝑥1(𝑡)
(

𝑐ℎ𝑜𝑚 + ∫

𝑡

𝑡0

𝑊𝜈
𝑊

𝑑𝑠
)

= 𝑒−𝑚𝑡
(

𝑐ℎ𝑜𝑚 + ∫

𝑡

𝑡0
𝑓 (𝑠)𝑒𝑚𝑠 𝑑𝑠

)
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10.3 Charakteristisches Polynom:

1.) 𝑎𝑛𝑦(𝑛) + ... + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑓 (𝑡)

2.) 𝑒𝜆𝑡 Ansatz ⇒ 𝑎𝑛𝜆
𝑛 + ... + 𝑎0 = 0 (homogene Lösung)

3.) nach ’Nullstellen’ lösen:
𝑎.) (𝜆 − 𝑎)(𝜆 − 𝑏)(𝜆 − 𝑐) = 𝜆3 − (𝑎 + 𝑏 + 𝑐)𝜆2 + (𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐)𝜆 − 𝑎𝑏𝑐

𝑏.)(𝜆3 + 3𝜆2 − 9𝜆 + 5) ∶ (𝜆 − 1) = 𝜆2 + 4𝜆 − 5

− (𝜆3 − 𝜆2)

+ 4𝜆2 − 9𝜆 + 5
→ (erste Nullstelle raten und dann ’verringern’)

4.) 𝜆𝑚 m-ter Ordnung → 𝑎0𝑒
𝜆𝑚𝑡 + 𝑎1𝑡𝑒𝜆𝑚𝑡 + ... + 𝑎𝑚−1𝑡𝑚−1𝑒𝜆𝑚𝑡 ← degeneracy m

𝑊 = exp
[

𝑛
∑

𝑖=1
𝜆𝑖 𝑡

]
∏

𝑖<𝑗
(𝜆𝑗 − 𝜆𝑖) ⇒ global degree 𝑛(𝑛 − 1)

2

5.) (inhom.): 𝑥(𝑡) =
𝑛
∑

𝑖=1
𝐴𝑖𝑒

𝜆𝑖𝑡 → in DGL = 𝑓 (𝑡) (Var. Konst.)

10.4 DGL-n-Ordnung:

1.) 𝐴𝑖𝑗 =
𝜕𝑓𝑖
𝜕𝑦𝑗

, 𝐴 = 𝑆𝐷𝑆−1 , 𝑥′ = 𝐴𝑥

→Beispiel: 𝑦 − 6𝑦′ − 2𝑦′′ = 12𝑦′′′ →
⎛

⎜

⎜

⎝

𝑦′1
𝑦′2
𝑦′3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑦2 = 𝑦′
𝑦3

1
12 (2𝑦3 + 6𝑦2 − 𝑦1)

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 1 0
0 0 1

− 1
12

1
2

1
6

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑦1
𝑦2
𝑦3

⎞

⎟

⎟

⎠

2.) det(𝐴 − 𝜆) = 0 ⇒ 𝜆𝑖 (Eigenwerte)
3.) [(𝐴 − 𝜆)|0] → 𝑣̄𝑖 (Eigenvektoren)
4.) 𝑆 =

(

𝑣̄1 𝑣̄2 𝑣̄3...) , 𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3...)

5.) [ 𝑆 | 𝑑𝑖𝑎𝑔(1, 1, 1...) ] →
[

𝑑𝑖𝑎𝑔(1, 1, 1...) | 𝑆−1 ] (oder z.B. Cramer’sche Regel)
6.) 𝑢 = 𝑆−1𝑥 , 𝑢′ = 𝐷𝑢 → 𝑢𝑖(𝑡) = 𝜉𝑖𝑒

𝜆𝑖𝑡

7.) Anfangsbedingungen + x(t) lösen

10.5 Grundlegende Lösungsschritte:
10.5.1 Separation der Variablen:

𝑑𝑥
𝑑𝑡 − 𝑎(𝑡)𝑥(𝑡) = 𝑓 (𝑡)

ℎ𝑜𝑚
←←←←←←←←←←←←←←←←→ ∫ 1

𝑥𝑑𝑥 = ∫ 𝑎(𝑡)𝑑𝑡

10.5.2 Variation der Konstanten:

𝑥(𝑡) = 𝑐 exp(∫ 𝑡𝑡0 𝑎(𝑠)𝑑𝑠)
𝑣𝑎𝑟.
←←←←←←←←←←←←←←←→ 𝑐(𝑡)

𝑖𝑛ℎ.
←←←←←←←←←←←←←←←→ 𝑐′(𝑡) exp(∫ 𝑡𝑡0 𝑎(𝑠)𝑑𝑠) = 𝑓 (𝑡)

10.5.3 Separationsansatz:

𝑦(𝑥, 𝑡) = 𝜒(𝑥)𝜏(𝑡)
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10.6 Sturm Liouville:
∃ Lösung:
𝑑
𝑑𝑡

(𝑝(𝑡)𝑥̇(𝑡)) + 𝑞(𝑡)𝑥(𝑡) = −𝜆𝜔(𝑡)𝑥(𝑡)

wenn:
𝑝(𝑡), 𝑝′(𝑡), 𝑞(𝑡), 𝜔(𝑡) ∈ ℝ und stetig auf [𝑎, 𝑏] und 𝑝(𝑡), 𝜔(𝑡) > 0 auf [𝑎, 𝑏]

regulär:

und dazu: 𝛼1𝑥(𝑎) + 𝛼2𝑥′(𝑎) = 0 , 𝛽1𝑥(𝑏) + 𝛽2𝑥′(𝑏) = 0
↪ mit 𝛼, 𝛽 ∈ ℝ ∧ |𝛼1| + |𝛼2| > 0 ∧ |𝛽1| + |𝛽2| > 0

dann:

∙ 𝜆 ∈ ℝ , 𝜆1 < 𝜆2 < ...→ ∞ (wie Pot.topf)
∙ ∀𝑛 ∃! 𝑥𝑛(𝑡) , wobei 𝑥𝑛(𝑡) das Problem loest
∙ 𝑥𝑛 hat n-1 Nullstellen in (a,b) und Basis in 𝐿2

↪ ⟨𝑓 |𝑔⟩ = ∫

𝑏

𝑎
𝜔(𝑡)𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡

⟶ ⟨𝑥|𝑦⟩ = ∫

𝑏

𝑎
𝜔(𝑡)(𝑥)𝑦 = 𝐵𝐶 + ⟨𝑥|𝑦⟩

⟶ 𝑥 = 𝜆𝑥 = − 1
𝜔
[

(𝑝𝑥′)′ + 𝑞𝑥
]

⟶  = − 1
𝜔(𝑡)

[

𝑝̇(𝑡) 𝑑
𝑑𝑡

+ 𝑝(𝑡) 𝑑
2

𝑑𝑡2
+ 𝑞(𝑡)

]

10.7 Bedingungen:
10.7.1 Anfangsbedingungen:

𝑥′′ + 𝜆𝑥 = 0 , 𝑥(0) = 0 , 𝑥′(0) = 0

10.7.2 Randbedingungen:

𝑥′′ + 𝜆𝑥 = 0

1.) 𝑥(0) = 0 , 𝑥(𝐿) = 0

⇒ 𝜆𝑛 =
(𝑛𝜋
𝐿

)2 , 𝑛 ∈ ℕ≥1

⇒ 𝑥𝑛 = 𝐴 sin
(𝑛𝜋
𝐿
𝑡
)

2.) 𝑥(0) = 0 , 𝑥′(𝐿) = 0

⇒ 𝜆𝑛 =
( 1
𝐿
(𝑛𝜋 + 𝜋

2
)
)2

⇒ 𝑥𝑛 = 𝐴 sin
(
(𝑛 + 1

2 )

𝐿
𝜋 𝑡

)

3.) periodisch: 𝑥(0) = 𝑥(𝐿) , 𝑥′(0) = 𝑥′(𝐿)

⇒ 𝜆𝑛 =
(2𝜋
𝐿
𝑛
)2

⇒ 𝑥𝑛 ∼ sin(2𝜋
𝐿
𝑛 𝑡) , cos(2𝜋

𝐿
𝑛 𝑡)
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10.8 Potenzreihen:

1.) 𝑓 (𝑥) =
∞
∑

𝑛=0
𝑎𝑛𝑥

𝑛 ⟶ in DGL einsetzen

2.) 𝑥𝑛 lin. unabhängig (...𝑎𝑛) = 0 → Rekursionsformel

3.) fuer 𝑎𝑛 loesen → Randbedingungen
⇒ (1 − 𝑥2)𝑓 ′′ − 2𝑥𝑓 ′ + 𝜆𝑓 = 0

⇒ (1 − 𝑥2)
∑

𝑛=0
𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 − 2𝑥

∑

𝑛=0
𝑛𝑎𝑛𝑥

𝑛−1 + 𝜆
∑

𝑛=0
𝑎𝑛𝑥

𝑛 = 0

⇒
∑

𝑛=0
(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥𝑛 −

∑

𝑛=0
𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 − 2

∑

𝑛=0
𝑛𝑎𝑛𝑥

𝑛 + 𝜆
∑

𝑛=0
𝑎𝑛𝑥

𝑛 = 0

⇒ 𝑎𝑛+2 =
𝑛(𝑛 + 1) − 𝜆
(𝑛 + 2)(𝑛 + 1)

𝑎𝑛

⇒ 𝑓 (𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) , 𝑦0(𝑥) = 𝑎0
(

1 +
∑

𝑘≥1
𝑎2𝑘𝑥

2𝑘) , 𝑦1(𝑥) = 𝑎1
(

𝑥 +
∑

𝑘≥1
𝑎2𝑘+1𝑥

2𝑘+1)

↪ bricht für alle 𝜆𝑛 = 𝑛(𝑛 + 1) ab

⇒ 𝑦0(𝑥) =
∞
∑

𝑘=0

[

𝑎0 ⋅
𝑘−1
∏

𝑗=0

(2𝑗)(2𝑗 + 1) − 𝜆
(2𝑗 + 2)(2𝑗 + 1)

]

𝑥2𝑘

⇒ 𝑦1(𝑥) =
∞
∑

𝑘=0

[

𝑎1 ⋅
𝑘−1
∏

𝑗=0

(2𝑗 + 1)(2𝑗 + 2) − 𝜆
(2𝑗 + 3)(2𝑗 + 2)

]

𝑥2𝑘+1

10.9 Partial differential equation (PDE):
Separationsansatz:

𝑦(𝑥, 𝑡) = 𝜒(𝑥)𝜏(𝑡)

𝜕2𝑦
𝜕𝑡2

= 𝑐2
𝜕2𝑦
𝜕𝑥2

⇒
𝑑2𝜒
𝑑𝑥2

= 𝜆𝜒(𝑥)

⇒
𝑑2𝜏
𝑑𝑡2

= 𝜆𝑐2𝜏(𝑡)
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11 Quantenmechanik:
m=1, ℏ = 1, c=1

11.1 Grundlagen:
11.1.1 Projektion:

𝑃 =
∑

|𝑎𝑖 >< 𝑎𝑖|

11.1.2 Erwartungswert:

⟨𝜓|𝐴|𝜓⟩ = ∫ 𝜓(𝑥)𝐴𝜓(𝑥)𝑑𝑥

11.1.3 Wahrscheinlichkeit:

| ⟨𝑎|𝜓⟩ |2

11.1.4 Spektrum:

Eigenwerte = Eigenniveaus, Resolvente

11.1.5 Entartung:

𝐸𝑛 =
𝑛2𝜋2

2𝑚𝐿 , 𝑛2 entartet, 𝑆̄2 → 𝑙(𝑙 + 1)

11.1.6 Definitionen:

|𝜓(𝑡) > = 𝑒−𝑖𝑡𝐻 |𝜓0 >

𝑒−𝑖𝑡𝐻 =
∑

𝑛≥0

(−𝑖𝑡𝐻)𝑛

𝑛!

𝑖 𝑑
𝑑𝑡

|𝜓(𝑡) > = 𝐻|𝜓(𝑡) >

11.1.7 Normierung:

∥ 𝜓 ∥2= ∫ ∞
−∞ |𝜓(𝑥)|2 𝑑𝑥 = 1

11.1.8 Bahndrehimpulsoperator:

𝐿𝑧 = −𝑖 𝜕
𝜕𝜑

𝐿± = 𝐿𝑥 ± 𝑖𝐿𝑦 = 𝑒±𝑖𝜑
(

± 𝜕
𝜕𝜃

+ 𝑖
cos(𝜃)
sin(𝜃)

𝜕
𝜕𝜑

)

−𝐿2 = 1
sin(𝜃)

𝜕
𝜕𝜃

(

sin(𝜃) 𝜕
𝜕𝜃

)

+ 1
sin2(𝜃)

𝜕2

𝜕𝜑2

11.2 Verschiedene Beispiele:
11.2.1 Harmonischer Oszillator:

𝐻 = −1
2
𝑑2

𝑑𝑥2
+ 𝜔2

2
𝑥2

𝐻 → (𝑛 + 1
2
)

𝐸𝑛 = ℏ𝜔(𝑛 + 1
2
)

36 HöMa3 - WiSe 2025/26



11 Quantenmechanik: Sparky

11.2.2 Partikel 1D Box:

𝐻 = 𝑝2

2 + 𝜔2

2 𝑥
2 , 𝑝̂ = −𝑖 𝑑𝑑𝑥

11.2.3 Potentialtopf:

⇒ 𝑉 (𝑥) =
{0 𝑥0 ∈ [0, 𝐿]
∞ 𝑥0 ∉ [0, 𝐿]

𝜓(𝑥) = 𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥) (Ansatz)

𝜓(0) = 0 = 𝜓(𝐿) , ∫ |𝜓|2𝑑𝑥 = 1

⇒ 𝜓(𝑥) =
√

𝐿
2
sin(𝑛𝜋

𝐿
𝑥)

11.2.4 Potential:

𝐻 = − 𝑑2

𝑑𝑥2
+ 𝑉 (𝑥)

|𝜓(𝑡) > =
∑

𝑐𝑛𝑒
−𝑖𝐸𝑛𝑡

|𝜙𝑛 >

11.2.5 Potentialstufe(?), aber mit Crack:

⇒ 𝑉 (𝑥) =
{

0 𝑥 ≥ 𝑎
∞ 𝑥 < 𝑎

𝑖)𝐻𝜓 = 𝐸𝜓

𝑖𝑖)𝐻 = −1
2
Δ + 𝑉 (𝑥)

→ 𝐸𝜓 = −1
2
1
𝑟2
𝜕𝑟(𝑟2𝜕𝑟𝜓) +

𝐿2𝜓
2𝑟2

→ 𝐿2 = − 1
sin(𝜃)

𝜕
𝜕𝜃

(

sin(𝜃) 𝜕
𝜕𝜃

)

− 1
sin2(𝜃)

𝜕2

𝜕𝜑2

𝑖𝑖𝑖) 𝜓(𝑟, 𝜑, 𝜃) = 𝑌 (𝜑, 𝜃)𝑅(𝑟) → Trennung der Variablen → 𝜆

𝑖𝑣) 𝐿2𝑌 = 𝜆𝑌 ⇒ 𝑌 = 𝑌 𝑚𝑙 (𝜑, 𝜃), 𝜆𝐿 = 𝑙(𝑙 + 1)

𝑣) ↪ in R Teil einsetzen ⇒ Sturm Liouville Problem
↪ 𝑝(𝑟) = 𝑟2, 𝑞(𝑟) = −𝑙(𝑙 + 1), 𝜔(𝑟) = 𝑟2

↪ 𝑅(0) = 𝑅0 <∞ , 𝑅′(0) = 𝑅′
0 <∞ , 𝑅(𝑎) = 0 , 𝑅′(𝑎) = 𝑅′

𝑎 < ∞

𝑣𝑖) 𝐸
?
≥ 0 ⇒ ⟨𝑅|𝐷𝑅⟩ ≥ 0 , 𝐷𝑅 = 2𝐸𝑅| ⋅ 𝑅

⟨𝑅|𝐷𝑅⟩ = ∫

𝑎

0
𝑟2𝑅̄𝐷𝑅 𝑑𝑟→ Part. int ≥ 0

(Weiteres siehe HöMa Skript - Altklausuren)
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